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Meet the Presenter... Dr. Ralf Sudowe

Dr. Ralf Sudowe has extensive experience in the area of nuclear 4
l I ‘ \q | | & .|" and radiochemistry, particularly in the development of

radioanalytical separations for actinide and transactinide
elements, as well as fission products. He is an Associate Professor of Health Physics and
Radiochemistry at the University of Nevada Las Vegas. He received a M.S. degree in
Chemistry from the Philipps-University Marburg in Germany in 1995, and a Ph.D. in
Nuclear Chemistry from the same institution in 1999. Dr. Sudowe spent two years as
Visiting Postdoctoral Fellow in the Nuclear Science Division at Lawrence Berkeley
National Laboratory and then worked for five years as Staff Scientist in the Nuclear
Science and Chemical Sciences Division at LBNL before joining the faculty at UNLV in
2006. He is a member of the American Chemical Society, the American Nuclear Society, il

and the Health Physics Society.

At UNLYV, Dr. Sudowe teaches courses in radioanalytical chemistry, radiation detection, and environmental
health physics and radiation biology, as well as laboratory courses in radiochemistry and radiation detection
instrumentation. His research focuses on the development and optimization of advanced radioanalytical
methods for environmental monitoring, nuclear forensics and safeguards, and emergency response. The goal is
to make radioanalytical methods available that have lower detection limits for the radionuclides of interest,
facilitate the fast analysis of a large number of samples, and allow assay of unusual sample matrices such as
urban rubble and process streams. The research utilizes a variety of modern analytical tools to obtain better
understanding of the fundamental properties of the separation process and to elucidate the role that interfering
elements have on the technique. Dr. Sudowe also studies the chemical and nuclear properties of transactinide

elements and is involved in target preparation and cross section measurements for stockpile stewardship
science.

Contact Information
Phone: +1 (702) 895-5964
Email: ralf.sudowe@unlv.edu
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Disclaimer

Certain products and manufacturers are
mentioned during this presentation for the
purpose of fostering understanding.

Reference to these commercial products and
manufacturers in this presentation does not
constitute recommendation or endorsement of the
products.



Alpha Spectroscopy

Alpha spectroscopy is a widely used technique for the
identification and quantification of alpha-emitting
radionuclides.

It is characterized by high efficiency, low background
and low detection limits.

It can be applied for the assay of a variety of samples.
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Alpha Spectroscopy

Alpha spectroscopy typically requires the separation of
the element of interest from the bulk sample.

Typically, every element is isolated individually.

Then one source is prepared for each element of
interest.



Advantages
Applicable to a large number of radionuclides.

High sensitivity/low detection limit.

« Transitions are grouped in a narrow energy range

Comparably low capital cost.



Disadvantages
Subject to severe attenuation effects.

Requires substantial sample processing.
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Detection Technique

Solid-State Semiconductor Detector
Frisch-Grid Ionization Chamber
Photon-Electron Rejecting Alpha Liquid Scintillation (PEARLS)

Microcalorimetry
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Detector Setup
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Source: ORTEC Advanced Measurement Technology, Inc., http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
Retrieved May 6, 2014


http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx
http://www.ortec-online.com/Solutions/alpha-spectroscopy.aspx

Detector Setup

Source: Canberra Industries, Inc., http://www.canberra.com/products/radiochemistry lab/pdf/Alpha-Analyst-SS-C40143.pdf
Retrieved May 6, 2014
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Source: Canberra Industries, Inc., http://www.canberra.com/products/505.asp
Retrieved April 24, 2012
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Figure 1
Thickness W of the depletion layer as a function of applied bias
a. partially depleted mode

b. fully depleted mode
c. fully depleted mode with overvoltage

Source: Canberra Industries, Inc., Considerations for choosing an alpha spectroscopy PIPS detector, Application

Note, C39168 - 12/11
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Detector Setup
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Alpha Particle Spectroscopy
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Alpha Particle Spectroscopy
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Effect of Sample Thickness
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- FIGURE 4.33 Three atoms of an alpha-emitting nuclide (labelled I, 2, and 3) are deposited
at different depths within the thickness of the sample. The energy of the alpha particle from
the atom labelled Z | will be degraded more than that of #2, which in turn is degraded more
than that of Z£3. Thus the observed energy of the alpha particles from a thick (monoener-
getic) sample will have a distribution of energies reflecting the thickness of the sample (as
well as due to straggling).

Source: L'Annunziata, M.F., Handbook of Radioactivity Analysis, 2" Edition, Academic Press (2003) 18
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Effect of Sample Thickness
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Source: Pollanen, R., Siiskonen, T., Vesterbacka, P., High-resolution alpha spectrometry from thick sources, Radiation
Measurements 39, 565 (2005)
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Effect of Absorption
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Source: L'Annunziata, M.F., Handbook of Radioactivity Analysis, 34 Edition, Academic Press (2012)
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Effect of Self-Absorption

0.4 uym source thickness
100 +
20 pm source thickness
m .
'E 40 um source thickness
=
O
o
10
1 T T T T T 113 1
0 0.5 1.1 1.6 2.1 2.7 3.2 5.3

Energy (MeV)

Source: L'Annunziata, M.F., Handbook of Radioactivity Analysis, 34 Edition, Academic Press (2012)
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Counting Efficiency

The intrinsic efficiency of the semiconductor
detectors used for alpha spectroscopy is
typically 100%.

The absolute efficiency is therefore governed by
the solid angle between the source and the
detector.

This assumes that the source is homogeneous.
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Counting Efficiency

The absolute efficiency ¢, , for a point source is
given by:

1 ( " )

Cabs — ~° 1
T2 HP4aR?
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Counting Efficiency
However, in most cases the source cannot be
represented as a point source.

In such cases the absolute efficiency ¢, . can be
approximated as:

1 RZ 3 RE-REZ-H 5 Rg‘-Ré-H{ 3 }
gabs:_° — . = _|_ . 5 . .
2 |D-(D+H)| 16 D 32 D
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Counting Efficiency

— Z A
1

Detector

Radioactive source

Source: Gascon J.L., Munoz A., Optimization of the parameters affecting the solid state detector efficiency
in alpha-spectrometry, Journal of Radioanalytical and Nuclear Chemistry 257, 371 (2003)
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Counting Efficiency

Typical counting efficiencies for a source with a
diameter smaller than the detector are 20-40%.

This assumes a source diameter of 10-15 mm
and a detector area of 300-600 mm?2.

As the distance between source and detector
increases, the efficiency will decrease.

The efficiency will also fall if the diameter of the
source becomes larger than that of the detector.
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Counting Efficiency
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Geometric efficiency as a function of source-detector Geometric efficiency as a function of source-detector
distance for a circular 15 mm diameter source coaxial distance for a circular 25 mm diameter source coaxial
with the detector. with the detector.
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Geometric efficiency as a function of source-detector Geometric efficiency as a function of source-detector
distance for a circular 25 mm diameter source coaxial distance for a circular 32 mm diameter source coaxial
with the detector. with the detector.

Source: Canberra Industries, Inc., Considerations for choosing an alpha spectroscopy PIPS detector, Application
Note, C39168 - 12/11
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Effect of Source Distance
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Source: L'Annunziata, M.F., Handbook of Radioactivity Analysis, 2" Edition, Academic Press (2003) 28
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Effect of Source Distance

The difference in the track length of a particle
traveling along path a versus path b is given by:

A = Differencein track length = (d + t)( 1 _ 1)
cos©



Effect of Source Distance

Peak broadening can therefore be reduced by:
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Effect of Detector Size
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Source: ORTEC, ULTRA and ULTRA AS Ion Implanted Silicon Charged Particle Detector Data Sheet,
http://www.ortec-online.com/download /ULTRA.pdf, accessed April 28, 2014
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Effect of Detector Size
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Figure 9
Specific minimum detectable activity as a function of
detector size for three different values of source-detector
distance h.

Source: Canberra Industries, Inc., Considerations for choosing an alpha spectroscopy PIPS detector, Application
Note, C39168 - 12/11



Background

Background in alpha spectrometry is mainly due to
electronic noise and contamination.

The pulse signal from alpha decay is typically
significantly larger then the electronic noise.

They can therefore easily be distinguished through
pulse height discrimination.

The background of a new spectrometer can be as low
as 105 — 1070 cps.

This results in a detection limit of 1 mBq.



Contamination

Sputtering of radioactive material from the
source can result in detector contamination.

This typically happens if the source material is
only loosely bound to the substrate.

The process is further facilitated by the applied
vacuuim.

However, this type of contamination can be
removed by cleaning the detector.



Recoil Contamination

The alpha decay imparts a certain momentum to
the recoiling nuclei.

This can cause the nucleus to be removed from the
source.

These atoms can attached themselves to the walls
of the alpha chamber or the detector.

This will result in an increased background.



Recoil Contamination
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Source: Sill C.W., Olsen D.G., Sources and prevention of recoil contamination of solid state alpha detectors,
Analytical Chemistry 42, 1596 (1970)



Recoil Contamination

Recoil contamination can be prevented by:

« Twelve mg/cm? air will reduce recoil contamination
by a factor of 1000



Recoil Contamination
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Figure 13. Change in resolution and apparent energy of
210Pg with increasing air pressure

Curve 1. Resolution obtained with a source-to-detector distance of
0.64 cm (top shelf) (left ordinate)
Curve 2. Resolution obtained with a source-to-detector distance of
1.92 cm (3rd shelf) (left ordinate)
Curve 3.  Shift in peak position or apparent energy. (right ordinate)
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Figure 14, Decrease in recoil contamination of

“Fr with increasing air pressure

Source: Sill C.W., Olsen D.G., Sources and prevention of recoil contamination of solid state alpha detectors,

Analytical Chemistry 42, 1596 (1970)



- ||
Recoil Contamination
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Figure 15. Pressure required to stop recoiling
29Fr atoms at various source-to-detector distances

Source: Sill C.W., Olsen D.G., Sources and prevention of recoil contamination of solid state alpha detectors,
Analytical Chemistry 42, 1596 (1970)



Long-term Stability

Long-term stability of detectors is important due
to the extended count times.

Surface barrier detectors.

 Easily affected by oil or acid vapors, fingerprints

Passivated ion-implanted planar detectors.
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Long-term Stability

All alpha detectors are sensitive to light.

Detectors are also sensitive to temperature
changes.

* Doubles every 5.5 — 7.5 °C
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Sample Processing

Sample preparation is required to convert the
raw sample into a form that is suitable for alpha

spectrometry.

The goal of this process is to:
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* Solvent Extraction
Ion Exchange
» Extraction Chromatography

\§ J

Chemical Separation

4 2

» Evaporation

Source Preparation  * Electrodeposition
* Microprecipitation

\§ J

@ A

Alpha Spectrometry
Mass Spectrometry

Liquid Scintillation Counting
Gamma Spectrometry

8 y

Analysis




Source Preparation

The ideal source for alpha spectrometry would be
an infinitely thin, weightless source on a perfectly
flat substrate.

However, this ideal is unlikely to be achieved for
real-life environmental samples.

The presence of inactive contaminants will lead to
energy loss by self-absorption, with resulting poor
resolution.



Source Preparation Techniques

Evaporation Vacuum sublimation
Electrospraying

Electrodeposition

* Molecular plating
Co- (Micro-) precipitation



Instrument Calibration

An instrument calibration has to be carried out to
establish:



Instrument Calibration

A multi-nuclide source is typically used as
calibration source.

The source should contain known amounts of 2-4
different radionuclides.

Nuclides are selected based on the energy region
that should be covered.

Activities of the radionuclides used should be
chosen as to minimize instrument dead time.



Instrument Calibration

The distance between source and detector should
be larger than the detector diameter.

The sample is then counted long enough to obtain
the desired uncertainty.



Calibration Sources
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Calibration Sources
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Instrument Calibration

Energy calibration:

Energy Resolution:



Instrument Calibration

Efficiency calibration:




Sample Measurement

Sample source is placed at a certain distance from
detector.

The chamber is evacuated to the desired pressure.



Sample Measurement

High voltage is applied to the detector.

Measurement time is selected based on detection
limit and/or uncertainty required.



Nuclide Identification

The sample preprocessing techniques that are
used in alpha spectroscopy help to simplify
nuclide identification.

The goal of the chemical separations carried out is
to isolate a specific element.

The fraction used for preparing the counting
source should therefore only contain isotopes of
the element of interest.



Nuclide Identification

The energies of the peaks in the spectrum are
compared with the literature alpha energy of the
expected isotopes.

An incomplete chemical separation will result in
the presence of isotopes from other elements in
the spectrum as well.

Analysis of the spectrum for other nuclides is
therefore an important part of method quality
control.
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Activity Determination

The area under the alpha peak of the analyte of
interest is determined.

« Especially important when analyzing for U-235

A blank sample is used to determine the
background counts in the same regions of interest.

 Particularly important for uranium analysis



Activity Determination
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U-235 Branching Ratios

4150 0.9
4214.7 5.7
4219 ~0.9
4271 ~0.4
4295 ~0.009
4366.1 17
4397.8 55
4414 2.1
4435 S
4502 1.7
4556 4.2

4596.4 5.0
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Isotope Dilution Analysis

Determining sample activity requires knowledge
of detector efficiency as well as chemical yield.

The detector efficiency can be determined as part
of the instrument calibration.

In many cases, however, the chemical yield is not
known.

This can be solved through the use of isotope
dilution analysis (IDA).



Isotope Dilution Analysis

In IDA, a known amount of a radioactive tracer is
added to the sample.

The tracer is typically an isotope of the analyte of
interest that should not be present in the sample.

e Caution: Both need to be in the same chemical form!
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Peak Area Determination

The area under the alpha peak of the analyte of
interest is determined.

The area under the alpha peak of the
corresponding tracer is integrated.

A blank sample is used to determine the
background counts in the same regions of interest.



Isotope Dilution Analysis
The recovery R is given by:
C, —C;

R=Y.-¢=
A,




Isotope Dilution Analysis

The activity concentration Ag for each analyte can
be obtained as:

_CS_CB
A = R-V




Tracers

Factors to consider for tracer selection:

 Short: Frequent purification required
Loss during analytical procedure
» Long: Insufficient specific activity

* Decay energy



Common Tracers

Po-209 a 4.881 MeV 102y
Th-229 a 4.687 MeV 7880y
U-232 o 5.320 MeV 68.9y
U-236 a 4.494 MeV 2.34-107y
Pu-236 o 5.768 MeV 2.858y
Pu-242 a 4.900 MeV 3.73:105y

Am-243 a 5.275 MeV 7370y
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