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Outline 
• Introduction: Brief overview of some sites 
• Aqueous speciation in natural waters 
− Complexation with inorganic and organic ligands 
− Redox reactions 

• Sorption to minerals and sediments 
• Precipitation/Formation of nanoparticulates 
• Colloid facilitated transport 
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Introduction – Pu-contaminated Sites 
• DOE facilities have significant Pu deposits as a result of weapons production 
• Hanford – 11.5 million m3 of soil with Pu-laden waste 
• Savannah River Site - 60 kg (1028 Ci) of 238Pu is buried as low-level waste  

in shallow vadose zone disposal 
• Nevada Test Site - approximately 2775 kg (8.3x105 Ci) of Pu (mostly 239Pu  

by mass) remains in the subsurface as a byproduct of underground nuclear 
testing 
 Yucca Flats, Nevada Test Site Low-level Pu Burial Ground, SRNL 

 Images: http://www.nv.doe.gov/nts/ and Powell et al., 2003 
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Need for Understanding U and Pu 
Geochemistry – Risk Evaluation 

http://picturethis.pnl.gov 
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Major Reactions Influencing Pu and U 
Environmental Behavior 

• Sorption/Desorption • Oxidation/Reduction  

• Precipitation/Dissolution 

Pu(IV) “nanocluster“  Soderholm et al. 2008,  Angew. 
Chem. Int. Ed., 47, 298 –302 

PuVO2+ 

sorption desorption 

- H+ 

+ H+ 

≡SOPuVO+
2
 

• Aqueous  Complexation 

Soluble UO2(CO3)3
4- complex. Clark et al., Chem. 

Rev., 1995, 95 (1), 25-48 
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Coupling of Geochemical Reactions 
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Aqueous Complexation - Outline  

• Common oxidation states 

• Common groundwater ions 

• Hydration of the actinides 

• Hydrolysis reactions 

• Complexation with halides 

• Complexation with oxyanions 

• Complexation with natural organic matter 
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Equilibrium Constants 
• Given reaction: 

 aA + bB  cC + dD 
 

• Ko is the equilibrium expression under 
standard conditions 
 

• Kc is a concentration-based equilibrium 
constant  
based on the given solution conditions 

• Stability constant notation (βo and βc) 
used for cumulative constants 
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Different names for the same thing (products over reactants) 
Stability constant = equilibrium constant = equilibrium for a metal-complex 
Dissociation constant = acid/base dissociation (i.e., pKa) 
Hydrolysis constant = metal ion hydrolysis (i.e., reaction with water/OH-) 
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Pu Oxidation States 
• Under environmental 

conditions, Pu(III), Pu(IV), 
Pu(V), and Pu(VI) are expected 
to be stable 
 

• Pu(IV) and Pu(V) appear to be 
the dominant oxidation states 
 

• These two oxidation states 
represent the extremes of 
mobility of Pu in the 
environment as Pu(IV) is 
insoluble and relatively 
immobile, while Pu(V) is 
generally soluble and mobile  
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Influence of Effective Charge 
• Most processes concerned with plutonium in 

oxidation states III-VI 
− Pu(III) and Pu(IV) present as free ions 
− Pu(V) and Pu(VI) present as actinyl ions PuO2

+ and PuO2
2+ 

• Overall effective charge of the ions does not follow 
formal charge (Rao and Choppin, 1984) 

Pu4+   >   PuO2
2+   ≈   Pu3+   >   PuO2

+ 

 4+            3.3+            3+           2.3+ 

Pu+ 

O 

O 

Pu++ 

O 

O 
Pu4+ Pu3+ 

Increasing  Complexation  
Affinity/Strength  
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General Solution Chemistry Trends 
• In neutral pH (5-9) natural waters, actinide ions hydrolysis readily. 

Therefore, solubility is generally limited to <10-6 M, with the notable 
exception of pentavalent actinides 

• Hydrolysis leads to An(OH)4(s) and AnO2(s), which may have a colloidal 
character 

• Other dissolved heavy elements are present at solubility concentrations 
of the actinides. Therefore, significant competition for chemical 
reactions exists (i.e. competition between Fe(III) and Pu(IV)) 

• Complexing ions such as carbonate, phosphate, humic substances, etc., 
may stabilize actinides as monomeric ions 

• All the above reactions are highly dependent on the oxidation state of 
the actinide 

• Stability of oxidation states varies for each actinide and the components 
within natural waters. Redox chemistry between actinides is not 
necessarily comparable. However… 

• Chemical behavior between oxidation states is generally similar 
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Actinide Hydration – An(H2O)x 

• Complexation reactions with water  
• f-element salts are fairly soluble in water  
• Strong ion-dipole interactions create a 

primary hydration sphere 
• Additional hydration layers created from 

additional dipole-dipole interactions 
• Hydration state and number is  

influenced by effective charge (see next 
slide) 
 
 

An(IV),  NH2O = 8 
An(VI),  NH2O = 5 
Vallet et al., 2001 
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Influence of Effective Charge on Hydration  
Choppin and Wong, Aqu. Geochem., 4, 77-101, 1998 

• Energy of hydration 
increases with 
decreasing ionic radius 
for a fixed charge 

 
• More negative entropy 

for Pu(IV) versus Pu(VI) 
and Pu(V) indicates 
increased hydration 
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Actinide Hydration 
• Pu(III)  - data indicate 9-10 hydrating 

waters with a Pu-O coordination 
number of 9 or 10 

• Pu(IV) – 8 hydrating waters with an 
Pu-O coordination number of 8 

• Pu(V)  – 5 coordinating waters with 
an overall Pu-O coordination number 
of 7 (5 waters and 2 axial oxygen 
atoms) 

• Pu(VI) – 5 or 6 coordinating waters 
with an overall coordination number 
of 7 or 8 (5 or 6 waters with 2 axial 
oxygen atoms) 

Ref: Table 28.3 The Chemistry of the Actinide and Transactinide Elements, 2006 

An(IV),  NH2O = 8 

An(VI),  NH2O = 5 
Vallet et al., 2001 
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Actinide Hydrolysis 
• General reaction 
  xAnz+  +  yH2O   Anx(OH)y

xz-y  +  yH+ 

 
 

• Occurs for all actinide ions 
− An(IV) – begins in acidic (~pH 1) solutions 
− An(III), An(VI) – begins in weakly acidic to neutral solutions 
− An(V) – begins above pH 8 

 
• Note: reaction can be written as 
  xAnz+  +  yOH-   Anx(OH)y

xz-y 

 
 
 

• βo and βo* are related through the water dissociation constant 
 

• Strength of hydrolysis will follow the same trend with regard to effective 
charge: 
▫ An(IV) > An(VI) > An(III) > An(V) 

2
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Comparison of Pu Hydrolysis vs Oxidation State 

The Chemistry of the Actinide and Transactinide Elements, 2006 
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Comparison of Pu(IV) and Pu(V) Hydrolysis 
• Data indicate first hydrolysis of Pu(V) and Np(V) does not occur until pH > 9 
• Most databases report a log β11 value of -9.7 for Pu(V) 

 
 

Hydrolysis of Pu(IV) 
Modeled using Geochemist 
Workbench, LLNL database 
 

Hydrolysis of Pu(V) 
Modeled using Geochemist 
Workbench, LLNL database 
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Actinide Halide Complexes (F-, Cl-, Br-, I-) 
• With the exception of F-, complexes are relatively weak 

 

• Limited data because high ligand concentrations and 
acidic conditions are required 
 

• Complexation strength  
− F- >>> Cl- >Br- > I- 

 

• Believed F- forms inner sphere complexes while  
Cl-, Br-, I- form outer sphere complexes 
 

 

• Note: In very strong acids, anionic species may form, 
such as PuCl6

-2 
 

• These and similar species are extremely important for 
separating actinides on ion exchange resins 
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Complexation with Oxo-ligands 
• General trend: Cl-, NO3

-< F-, SO4
2-, HPO4

2- < CO3
2-, OH- 

 

• NO3
- generally forms stronger complexes than Cl- 

 

• Primarily due to bidentate binding 
 

• Complexation with other oxo-ligands extremely 
important for understanding environmental behavior 
 

• Carbonate complexes are of particular importance 
 

CO2(g) <-> CO2(aq)    log KH = -1.47 
CO2(aq) + H2O <-> H2CO3(aq)  log Keq = -2.70 
H2CO3(aq) + H2O <-> H+ + HCO3

-   log K1= -6.35 
HCO3

- <->  H+ + CO3
-     log K2= -10.33 
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Tetravalent Actinide-Carbonate Complexes  
Clark et al., Chem. Rev. 95, 1995, 25-48 

 

• Some uncertainty in these assignments 
• Rai et al., 1999, and Zavarin et al., 2006, 

propose additional hydroxycarbonate species 
Pu(OH)2(CO3)2

2− and Pu(OH)4(CO3)2
4− 

• Sorption data imply that Pu(IV) carbonate 
complexes do not significantly mobilize Pu(IV) 
(data discussed below) 
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Reaction Ionic 
Strength log K 

Pu4+ + CO3
2- <=> PuCO3

2+ 0.3 17.0 +/- 0.7 
Pu4+ + 2CO3

2- <=> Pu(CO3)2
0 0.3 29.9 +/- 0.96 

Pu4+ + 3CO3
2- <=> Pu(CO3)3

2- 0.3 39.1 +/- 0.82 
Pu4+ + 4CO3

2- <=> Pu(CO3)4
4- 0.3 42.9 +/- 0.75 

Pu4+ + 5CO3
2- <=> Pu(CO3)5

6- 0.3 44.5 +/- 0.77 
Pu4+ + 2CO3

2- + 4OH- <=> Pu(OH)4(CO3)2
4- 0.1 46.4 +/- 0.70 

Th4+ + 5CO3
2- <=> Th(CO3)5

6- 1 26.2 +/- 0.2 



Pentavalent Actinide Carbonate Species 
Clark et al., Chem. Rev. 95, 1995, 25-48 
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Reaction Ionic 
Strength log K 

NpO2
+ + CO3

2- <=> NpO2CO3
- 0.5 4.2 +/- 0.1 

NpO2
+ + 2CO3

2- <=> NpO2(CO3)2
3- 0.5 6.4 +/- 0.2 

NpO2
+ + 3CO3

2- <=> NpO2(CO3)3
5- 0.5 7.8 +/- 0.3 

PuO2
+ + CO3

2- <=> PuO2CO3
2- 0.5 4.6 +/- 0.04 

PuO2
+ + 3CO3

2- <=> PuO2(CO3)3
5- 1 10.0 +/- 2.1 



Pu(V)-Carbonate Speciation 
  

• Modeled using Geochemist workbench incorporating constants from Clark et al., 1995 
• Conditions: [Pu(V)] = 10nM, [NaCl] = 10 mM, [CO3

2-] = 1 mM 
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Naturally Occuring Ligands 
• Organic materials generated as exudates by organisms and plants 

and byproducts of decay of organic material 
• Terminology 

▫ Dissolved organic matter (DOM) 
▫ Natural Organic Matter (NOM) 
 

• Aliphatic organics 
− Formic acid (pKa 3.8) 
− Acetic acid (pKa 4.8) 
− Oxalic acid (pKa 1.3) 
 

• Amino acids 
− Glycine 
− Aspartic acid 
− Common formula 
 

• Saccharides 
− Glucose, cellulose, lignin 

R 
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Naturally Occuring Ligands - 
Siderophores 

• Siderophore: small “iron-chelating” compound excreted by microorganisms, 
fungi, and grasses to assist with iron uptake 

• Current literature shows that siderophores are not as selective as once thought 
• Pu(IV) and Fe(III) have similar charge to radius ratios 
• Therefore, many biological processes that utilize siderophores for metal  

uptake may intentionally or unintentionally influence actinides 
• Most commonly studied siderophore is desferrioxamine B (DFOB) because  

it is the only one commercially available  
 DFOB – polyhydroxamic acid ligand 
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Pu-Desferrioxamine B Complexation 
Pu-DFOB
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Modeled using HYSS 
 
Constants from Boukhalfa 
et al., Inorg Chem.,  
2007, 46, 1018-1026 
 
[Pu(IV)] = 1E-6 M 
[DFOB] = 1E-6 M  

28 



Pu-Desferrioxamine B Complexation 

Modeled using HYSS 
 
Constants from Boukhalfa 
et al., Inorg Chem.,  
2007, 46, 1018-1026 
 
[Pu(IV)] = 1E-6 M 
[DFOB] = 1E-3 M  
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Humic Substances 
• See Sposito, The Chemistry of Soils, for more detail 

 
• Humic substances 
− Humic acid: soluble above pH 2, 1000-10000 amu 
− Fulvic acid: soluble at all pH values, 500-2000 amu 
− Humin: Insoluble fraction 

 
• Various complexing functional groups 
− Carboxylic  – COOH 
− Phenolic  – OH 
− Amino  – NHR, -NH2 
− Thiol  – RS 

 
• Model structures on following slides 
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Examples of Humic Substances  
(DFOB and citric acid shown for comparison) 

Fulvic acid 

Citric acid 
Desferrioxamine B 

Humic acid  (Stevenson 1982) 
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Modeling Actinide – NOM Binding 
• Number of complexing groups and free binding sites is unknown 
• Acid-base titrations can be used to calculate meq/gNOM values 

which can then be used to calculate protonation/deprotonation of 
available sites 
− Also calculate a degree of ionization 

• Charge Neutralization Model (Kim and Czerwinski, 1996) 
− Uses an operational humic acid concentration and loading capacity 

z+M  + HA(z) <=> MHA(z)
[ ( )]LC = 
[ ( )]

[ ( )]
[ ] [ ( )]

[ ( )]log log[ ( )] log
[ ]

m

total

z
free free

freez
free

MHA s
HA z

MHA z
M HA z

MHA z HA z
M

β

β

+

+

=

= +

z+[ ( )]  maximum M  
concentration permissible for 
complexation with functional sites

mMHA s =
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Humic Acid – Actinide Complexation 
Silva and Nitsche, 1995, Radiochim. Acta 
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Modeling Actinide – NOM Interactions 
Discrete pKa Model 
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pH 

Base(IV) actual 

Base (IV) model 
(pKa: 3,5,7,9) 

pKa 
Site conc. 

(mol/mg C) 

3 4.19E-06 
5 2.06E-06 
7 1.59E-06 
9 1.53E-06 

Acid-base titration of Leonardite Humic Acid 

Zimmerman and Powell, Geochimica et Cosmochimica Acta, 2012, in review 
Similar discrete pKa models for Pu complexation with extracellular polymeric 
substances (Harper et al., 2008) and alginic acid (Kantar et al., 2005)  
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Discrete pKa Model 
Actinide – Humic Acid Complexation 
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Np 2.6E-8M, Model 
Np 4.3E-8M, data 
Np 4.3E-8M, Model 
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Th 4.9E-8M, Model 

Zimmerman and Powell, Geochimica et Cosmochimica Acta, 2012, in review 
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Actinide – Leonardite Humic Acid Stability 
Constants 

Reaction  Stability Constant 
Four discrete pKa ligand binding sites 

HL(x) ↔ H+ + L(x)- pKa = 3, 5,7, 9 

Pu4+ + HL3 + 2H2O ↔ Pu(OH)2L3+ + 3H+ log K = 6.76 
Th4+ + HL3 + 2H2O ↔ Th(OH)2L3+ + 3H+ log K = 3.58 

NpO2
+ + HL1 <=> NpO2L1 + H+  log K = 0.31 

NpO2
+ + HL2 <=> NpO2L2 + H+  log K = -1.35 

NpO2
+ + HL3 <=> NpO2L3 + H+  log K = -2.28 

An-EDTA

[An(EDTA)(OH)]-

An-DTPA

An-NTA

[An(DFOBMTA)]-

An-DFOB

y = 1.0022x + 3.6556
R² = 0.9578
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36 



  Oxidation/Reduction – Outline  

• Common oxidation states 
• Redox speciation in natural waters 
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Plutonium Oxidation/Reduction 

• Oxidation state has profound influence on Pu 
mobility 
− Pu(IV)4+ << Pu(VI)O2

2+ ≈ Pu(III)3+ < Pu(V)O2
+   

 

Pu+ 

O 

O 

Pu++ 

O 

O 
Pu(OH)x

(4-x) 

Pu(OH)x
(3-x) 

  acidic  neutral basic 
Pu(IV)/Pu(III) 0.98 -0.39 -0.96 
Pu(V)/Pu(IV) 1.17 0.70 -0.67 
Pu(VI)/Pu(V) 0.91 0.60 0.12 
Pu(VI)/Pu(IV) 1.04 0.65 0.34 

Formal electrochemical potentials  
versus standard hydrogen electrode 
(Clark et al., in The Chemistry of the 
Actinide Elements, vol. 3, 2006, p. 1118) 
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Pu Speciation in Natural Waters 
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Pu EH – pH Diagram GWB Modeling LLNL Database 
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Pu EH – pH Diagram Open to 
Atmosphere  GWB Modeling LLNL Database 
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Actinide Speciation in J-13 Well Water 
Nitsche and Edelstein, RCA, 39, 23-33, 1985 

42 

Species Conc. (mM) 
Ca2+ 0.29 
Mg2+  0.072 
Na+ 1.96 
K+ 0.136 
Li+ 0.009 
Fe 0.0008 
Mn 0.00002 
F- 0.11 
Cl- 0.18 

SO4
2- 0.19 

NO3
- 0.16 

Alkalinity 2.34 meq/L 
pH 7 
EH 700mV 

Initial 
Species 
Added 

Solubility in J-
13 Water (M) 

Final Oxidation 
State of soluble 
Species 

Solid  

Pu4+ 1.6 ± 0.2 x 10-6 

Pu(III) + Pu(IV) = 
2 +/-3%  
Pu(V) + Pu(VI) = 
98 +/- 3% 

Amorphous 

PuO2+ 8 ± 3 x 10-6 

Pu(III) + Pu(IV) = 
0 +/-2%  
Pu(V) + Pu(VI) = 
100 +/- 2% 

Crystalline 
solid 

PuO22+ 3 ± 2 x 10-5 

Pu(III) + Pu(IV) = 
2 +/-2%  
Pu(V) + Pu(VI) = 
98 +/- 2% 

Crystalline 
Solid 

J-13 Well Water Composition 
Solubility and Redox speciation of Pu added to J-13 
well water using different initial oxidation states 



Pu(V) Reduction by Humic Acid 
Andre and Choppin, Radiochim. Acta, 88, 613, 2000  
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Pu Speciation in Gorleben 
Groundwater Marquardt et al., RCA, 92, 617-623, 2004 
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Np Reduction by Quinonoid Enriched Humic 
Derivatives  Shcherbina et al., Env. Sci. Tech., 41, 7010-7015, 2007 
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  Sorption/Desorption 

• Overview of mineral water interface chemistry 
• Quantifying sorption processes 
• Sorption in binary systems 
• Influence of aqueous chemistry on sorption  

– Aqueous complexation with inorganic ions 
– Redox reactions complexation on sorption  
– Complexation with organic ions 

• Colloidal transport of plutonium 
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Sorption Distribution Coefficients 
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Empirically Quantifying Sorption Processes 
 

• Linear Distribution Coefficient, Kd 
 
− Typically determine [An(t)]solid by difference 

during sorption tests 
 

 
• Empirical Isotherms 

 
− Freundlich 

  
− Langmuir 
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See second lecture in this series for a discussion of sorption models, including surface complexation modeling 
approaches. 
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Surface Charge Versus pH 

Modified from Stumm and Morgan, 1996 
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Cation Sorption: Actinide Sorption Trends 

• Sorption of actinides to goethite versus pH 
− Unpublished data from Shanna Estes, Clemson University, 2011 

• Sorption affinity follows expected trend 
• An(IV) > An(VI) > An(III) > An(V) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

2 4 6 8 

Fr
ac

tio
n 

So
rb

ed
   

pH 

Eu(III) 
Th(IV) 
Np(V) 
U(VI) 

50 



Plutonium Sorption/Desorption 
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Effect of Carbonate on Pu(V) Sorption 
Powell et al., LLNL-TR- 408276, 2008  

• Sorption of Pu(V) to SWy-1 Na-montmorillonite after 24 hours 
• Open symbols represent systems where atmospheric CO2(g) was excluded 
• System parameters: [montmorillonite] = 10 m2 L-1 (0.17 g L-1); [Pu] = 1.2 x 10-10 M, initially 

added as Pu(IV); [NaCl] = 0.01; NaHCO3/Na2CO3 added to solutions exposed to atmospheric 
CO2(g) to speed equilibration. Total [HCO3

-] at desired pH added based upon known KHCO3- and 
KCO3—values, but limited to a maximum concentration of 0.010 M at higher pH values. 
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Apparent Surface Mediated Reduction of Pu(V)  
Sanchez, Geochimica et Cosmochimica Acta, 1985 

• The shift in the sorption edge to lower pH values over time is indicative of surface 
mediated reduction of Pu(V) to Pu(IV) 

• Similar observations from Kenny-Kennicutt and Morse (1985) and Powell et al. 
(2005) 
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Apparent Surface Mediated Reduction of Pu(V)  
Sanchez, Geochimica et Cosmochimica Acta, 1985 

• The shift in the sorption edge to lower pH values over time is indicative of surface 
mediated reduction of Pu(V) to Pu(IV) 

• Similar observations from Kenny-Kennicutt and Morse (1985) and Powell et al. 
(2005) 
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Numerous Observations of  
Surface Mediated Redox Reactions 
Plutonium Interactions with Synthetic Minerals and 
Sediments 
Observed Reaction Solid Phase 

Pu(V) reduction to 
Pu(III/IV) 

goethite (α-FeOOH)1,2,3, hematite (α-Fe2O3) 3,4,5, 
magnetite(Fe3O4)6, hausmannite (Mn3O4)7, 
manganite (γ-MnOOH)5, pyrolusite (β-MnO2)8, 
yucca mountain tuff8, SRNL sediment9 

Pu(IV)/Pu(V) oxidation 
to Pu(VI) pyrolusite (β-MnO2)8, Other MnO2-oxides10 

Observed Pu(III) at 
steady state 

SRS sediments exposed to field conditions for 2-
12 years11 

1Kenney-Kennicutt and Morse, 1985; 2Sanchez et al., 1985; 3Powell et al., 
2005; 4Khasanova et al., 2007; 5Romanchuk et al., 2001; 6Powell et al., 
2004, 7Shaughnessey et al., 2003; 8Powell et al., 2006; 9Kaplan et al., 
2004 10Morgenstern and Choppin, 2002; 11Kaplan et al., 2007 
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Comparison of Pu and Th Sorption 
Banik et al., Radiochimica Acta, 95, 569-575, 2007  

• Aqueous Pu at neutral 
pH region was found 
to be Pu(V) despite 
having added the Pu 
initially as Pu(IV) 
 

• Implies a complicated 
equilibrium 
distribution of both 
Pu(IV) and Pu(V) in 
both aqueous and 
solid phases 
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Pu Sorption to Nevada Test Site Tuff 
Zhao et al., Applied Geochemistry, 26, 308-318, 2011 
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Pu Sorption to Nevada Test Site Tuff   
Zhao et al., Applied Geochemistry, 26, 308-318, 2011 
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Influence of Humic Acid on Pu Sorption to 
Kaolinite  Buda et al., Radiochimica Acta, 96, 657-665, 2008 

• Humic acid increases sorption at low pH likely due to ternary complex 
formation 
 

• Humic acid decreases sorption at high pH likely due to aqueous 
complexation with humic acid  
 

• Data also imply that order of addition of humic acid, Pu, and kaolinite 
influences the distribution 
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Colloidal Transport of Contaminants 

• Honeyman, Nature, January 1999, Vol 297 
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Nevada Test Site 
• Over 900 nuclear 

detonations 
 

• Approximately 2775 kg 
(8.3x105 Ci) of Pu (mostly 
239Pu by mass) remains in 
the subsurface as a 
byproduct of underground 
nuclear testing 
 

• Kilometer scale movement 
of Pu observed in field 
measurements (Kersting et 
al., 1999) 
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Colloidal Pu Transport 
at the Nevada Test Site 
Kersting et al., Nature, 397, 56-59, 1999 
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Colloidal Pu Transport 
at the Nevada Test Site 
Kersting et al., Nature, 397, 56-59, 1999 
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Organic Rich Colloids from Rocky Flats 
Environmental Technology Site Santschi et al., Env. Sci. Tech., 
36, 3711-3719, 2002; Roberts et al., Coll. Surf. A, 244, 105-111, 2004 
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Organic Rich Colloids from Rocky Flats 
Environmental Technology Site Santschi et al., Env. Sci. Tech., 
36, 3711-3719, 2002; Roberts et al., Coll. Surf. A, 244, 105-111, 2004 
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  Precipitation/Dissolution 

• Expected (nano) precipitates under environmental 
conditions 
 

• See webinars on “Uranium Chemistry” and 
“Plutonium Chemistry” for detailed discussions of 
many solid phases 

67 



Modeling Pu Solubility 
Neck et al., Radiochim. Acta, 2007, 95, 193-207 
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Pu(IV) nanocolloids, Powell et al., 2012 
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TEM Analysis of Plutonium Oxide Particles 

• Starting in 1950, observations of decreased solubility of Pu over time lead 
scientists to believe that PuO2(s) takes a polymeric form 

• X-ray scattering data indicates nanoclusters of Pu may form from saturated LiCl 
solutions ([Pu38O56Cl54(H2O)8]14-, Soderholm et al., 2008) 

• TEM data (above) indicate that PuO2 is comprised of aggregated PuO2 
nanoparticles and does not take a polymeric form (Powell et al., 2011) 

• Are these nanoparticles/nanocolloids mobile?  

2 nm 

3.08Å 
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Pu Nanocolloids Associated with Goethite 

Powell et al., Environ. Sci. Tech, 2011 
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TEM Analysis of Plutonium Oxide Particles 
on Goethite 
  

Powell et al., Environ. Sci. Tech, 2011 
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• Plutonium nanocolloids 
formed on goethite have 
undergone a lattice 
distortion relative to the 
ideal fluorite-type 
structure, fcc, PuO2, 
resulting in the 
formation of a bcc, 
Pu4O7 structure. 

• Distortion is a result of 
epitaxial growth of the 
PuO2 nanocolloid on 
goethite 

• Implication of strong 
bonding of Pu to 
goethite 



Summary 
• Plutonium exhibits remarkably complex chemistry 

owning to the sensitivity of Pu to undergo redox 
reactions 
 

• Environmental mobility is influenced by a variety of 
factors 
 

− Transport of colloidal Pu(IV) associated with natural 
colloids and possibly as PuO2 nanocolloids 
 

− Tranport of soluble Pu(V) or Pu(IV)-organic ligand 
complexes 
 

• Sorption behavior and subsequent mobility is 
primarily controlled by complex aqueous speciation 
 

• Understudied but significant microbial interactions 
are likely very important 
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Future NAMP Radiochemistry 
Webinars  
 
•Actinide Chemistry Series 

− Part 2: Environmental Chemistry of Uranium 
− Analytical Chemistry of Uranium and Plutonium 
− Source Preparation for Alpha Spectroscopy 
− Sample Dissolution 

•Radium Chemistry 
 
  NAMP website www.inl.gov/namp  
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