

Introduction to technetium chemistry

In Cooperation with our University Partners

Meet the Presenter... Dr. Frederic Poineau

Dr. Frederic Poineau is an Assistant Professor in the Radiochemistry Program at the University of Nevada Las Vegas. In 2001-2004, he performed his doctoral study at the laboratory Subatech (Nantes, France) on technetium chemistry. His thesis work focused on the speciation of tetravalent technetium complexes in chloride media. In 2005, he moved to UNLV where he conducted his post-doctoral researches. In 2016, he obtained his Habilitation from the University of Nantes. He is an expert on technetium chemistry, his research interests include: synthesis and coordination chemistry of technetium complexes with multiple metal-metal bonds, technetium binary materials (alloys, halides, oxides). He worked on the separation of uranium from technetium for the UREX process and on the development of Tc waste forms. He is regularly involved in the characterization of technetium, and f-elements compounds by diffraction and X-ray absoprtion fine structure spectroscopy. He has co-authored 96 articles, 2 book

chapters and a patent.

Phone: (702) 895-5351 Email: poineauf@unlv.nevada.edu

Introduction to technetium chemistry

Frederic Poineau University of Nevada, Las Vegas UNIV RADIOCHEMISTRY PROGRAM

> National Analytical Management Program (NAMP) U.S. Department of Energy Carlsbad Field Office

> > TRAINING AND EDUCATION SUBCOMMITTEE

1. Introduction

- 2. Metal and binary compounds
- **3. Metal-metal bonded complexes**
- 4. Aqueous solution chemistry
- 5. Summary

Element 43, Group 7- second row transition metal

✤1869: Predicted by D. Mendeleev

	22	23	24	25	26	27	28	29	30
	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089
	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
8	40	41	42	43	44	45	46	47	48
	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411
	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rbodium	Palladium	Silver	Cadmium
	72	73	74	75	76	77	78	79	80
	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg
	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59
×	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury

- ✤1934: Predicted to have no stable isotope (Mattauch rule)
- ✤1937: Discovered of Tc by E. Segre and C. Perrier
- ✤ 1938: Discovery of ^{99m}Tc by Segre and Seaborg
- ✤ 1952: Discovery of ⁹⁹Tc in a note from ORNL
- ✤ 1961: Isolation of ⁹⁹Tc in pitchblende

Lightest radioelement: 32 isotopes which are all radioactive

Longest lived isotopes: ⁹⁷Tc, ⁹⁸Tc and ⁹⁹Tc

Mass number

The isotope ⁹⁹**Tc is a fission product, yield ~ 6 % from fission of** ²³⁵**U** 0.8 kg/MT of spent fuel (33 MWd/kg U) Current Tc inventory in the US~ 56 MT (from spent fuel)

Present in small metallic inclusions as an alloy with Mo-Ru-Pd-Rh (ε-phases)
> Composition (at %)
Mo (30- 40), Ru (30-40), Tc (10), Pd (10-15), Rh (5)

Sizes: from 1 nm to 1 μm

Very corrosion resistant
 Present in the dissolver during spent fuel reprocessing

Technetium at the Hanford site

- Hanford (WA, US): primary site for production of plutonium for Manhattan Project
- Produced ~ 55 million gallons of radioactive waste which are stored in 177 tanks
- Approximately ~1500 kg of ⁹⁹Tc
 - Primarily present in the form of TcO_4^- (highly mobile)
- Separation of waste into high level (HLW) and low-activity (LAW) waste followed by vitrification
 - ⁹⁹Tc will be incorporated in the LAW glass and stored on site

^{99m}Tc: Imaging agent in nuclear medicine ~90% of radio-diagnostic

Optimal nuclear properties: Energy allows imaging deep organ without damage
 Versatile chemistry: Coordination with suitable functional group (brain, heart, bone..)

Cardiolite: Heart imaging 40 million patients treated since 1991

Heart

Available in ⁹⁹Mo/^{99m}Tc generator
 ⁹⁹Mo: fission of highly enriched uranium in reactor

 *C-Size HMFAD

 Day 10

 Composition

 Tc-Size HMFAD

 Day 23

99Mo/99mTc generator

Potential applications

Catalyst: Tc efficient catalytic properties for aldehyde production

Anti-corrosive agent: 55 ppm in steel avoids corrosion (passivation by insoluble Tc oxide). Tank in nuclear reactor.

Source of ruthenium (catalyst): transmutation of ⁹⁹Tc to ¹⁰⁰Ru

Transmutation of ⁹⁹Tc by neutron capture

 $^{99}Tc + n \rightarrow {}^{100}Tc \rightarrow {}^{100}Ru \ (Stable) + \beta^{-}$

Exp. demonstration performed in 2003- 2008 in a fast neutron reactor

Phenix fast neutron reactor

Assembly for transmutation

Transmuted Tc Tc/Ru alloys

Five years irradiation: ~25 % of Tc transmuted into Ru

Technetium chemistry

Electronic structure: [Kr]4d⁵5s², 9 oxidation states (+7 to -1)

Тс	4d config.	Compound
+7	d^0	KTcO ₄
+6	d ¹	(TBA)TcNCl ₄
+5	d^2	(TBA)TcOCl ₄
+4	d ³	K ₂ TcCl ₆
+3	d ⁴	$(TBA)_2Tc_2Cl_8$
+2	d ⁵	(TBA)Tc(NO)Cl ₄
+1	d ⁶	$K_5Tc(CN)_6$
0	d ⁷	$Tc_2(CO)_{10}$
-1	d ⁸	$[Tc(CO)_5]^-$

TBA: tetrabutyl-ammonium, $(Bu_4N)^+$

TcO₄-

TcL₆ anion: L = Cl, NCS, CN

TcLCl₄ anion L = N, O

Tc and Re share similar electronic structure

Similar coordination complexes

Metal-metal bonded dimers

Heptavalent complexes

42	43	44
Мо	Тс	Ru
85.94	98	101.07
Molybdenum	Technetium	Ruthenium
74	75	76
W	Re	Os
183.84	186.207	190.23
Tungsten	Rhenium	Osmium

≻Tc coordination chemistry less developed than Re

	Metal-metal bonded dimers	Heptavalent complexes
Tc	25	30
Re	500	150

Understand fundamental chemistry of technetium

- ≻Development of new ^{99m}Tc imaging agents
- ≻Improve applications related to Hanford remediation
- >Improve applications related to management of spent fuel: waste form development
- ≻Predict behavior of Tc in environment

- **1. Introduction**
- 2. Metal and binary compounds
- **3. Metal-metal bonded complexes**
- 4. Aqueous solution chemistry
- **5. Summary**

Metal

Structure: hexagonal compact (Hcp) Density: 11.49 Melting point: 2200 °C Boiling point: 4270 °C

Preparation

→ Thermal reduction of NH_4TcO_4 under H_2 at T > 500 °C $NH_4TcO_4 + 2H_2 \rightarrow Tc + 4H_2O + (1/2)N_2$

 \rightarrow Electro-reduction of TcO₄⁻ in H₂SO₄

Tc metal on Cu electrode

Binary Oxides

Transition metal binary oxides: MO_n (n = 1- 4) ~70 are known (e.g., 5 for Mn, 3 for Re)

Two technetium binary oxides reported in the solid-state: TcO₂ and Tc₂O₇

Тс	Solid	Structure
+7	Tc ₂ O ₇	Molecular dimer Similar to Mn ₂ O ₇
+4	TcO ₂	Extended structure Isostructural to ReO ₂

Five binary oxides reported in the gas phases: TcO₃, Tc₂O₆, Tc₂O₅, Tc₂O₄, TcO

TcO₂

Decomposition of NH_4TcO_4 under Ar atmosphere at 750 °C $NH_4TcO_4 \rightarrow TcO_2 + 2H_2O + (1/2)N_2$

Extended structure: Characterization by NPD

Set-up

Bond	Distance (Å)
Tc-Tc1	2.622(1)
Tc-Tc2	3.076(1)

≻Tc-Tc bonding

TcO₂ is insoluble in H₂O (solubility: ~ 10^{-7} - 10^{-8} M)

Tc₂O₇

Oxidation of TcO₂ by O₂ at 450 °C in a sealed tube ≥ 2 TcO₂ + (3/2)O₂ \rightarrow Tc₂O₇

Tc₂O₇ is highly volatile and soluble in H₂O

Tc₂O₅: main fragmentation product of Tc₂O₇

Binary Halides

Transition metal binary halides: MX_n (X = halide; n = 1-7) ~Two hundred are known (e.g., 13 for Mo, 14 for W and Re) ≻Ten Tc binary halides are known

Μ	Fluorides	Chlorides	Bromides	Iodides
+2	-	α/β -TcCl ₂	-	-
+3	-	α/β-TcCl ₃ Re ₃ Cl ₉	TcBr ₃ Re ₃ Br ₉	TcI ₃ Re ₃ l ₉
+4	- ReF ₄	TcCl ₄ ReCl ₄	TcBr ₄ ReBr ₄	- ReI ₄
+5	TcF ₅ ReF ₅	- ReCl ₅	- ReBr ₅	-
+6	TcF ₆ ReF ₆	- ReCl ₆	-	-
+7	ReF ₇	-	-	-

Fluorides

TcF₆ synthesized in 1961 Tc + xs $F_2 \rightarrow TcF_6$

Molecular TcF₆

Tc(+6), d^1 Isostructural to ReF₆ TcF₅ synthesized in 1963 Tc + xs N₂/F₂ \rightarrow TcF₅

Chain of corner sharing TcF₆ octahedra

Tc(+5), *d*² Isostructural to ReF₅

Chlorides

Reaction between Tc metal and Cl₂ in sealed tube (Tc:Cl ~ 1:2)

Technetium tetrachloride

Technetium tetrachloride synthesized in 1957

$Tc + xs Cl_2 \rightarrow TcCl_4$

Infinite chain of edge-sharing TcCl₆ octahedra

Тс…Тс	3.62	Tc-Cl3	2.38
Tc-Cl1	2.25	Tc-Cl2	2.49

Tc...Tc = 3.62 Å: no Tc-Tc bond
TcCl₄ is paramagnetic (d³ configuration)
Precursor for synthesis, TcCl₄L₂; L= THF, H₂O

β-Technetium trichloride

β-TcCl₃: Infinite layers of edge -sharing TcCl₆ octahedra

β-TcCl₃ crystallize with the "MoCl₃" structure-type
 Tc-Tc = 2.861(1) Å, presence of Tc=Tc double bond
 β-TcCl₃ converted to α-TcCl₃ at 280 °C in 10 days

a-Technetium trichloride

 α -TcCl₃ layer

 Tc_3Cl_9 cluster in α -TcCl₃

 $> \alpha$ -TcCl₃ crystallize with the "ReCl₃" structure-type

- ≻ Tc-Tc separation of 2.444(1) Å
- > Presence of Tc=Tc double bonds

Technetium dichloride

β-TcCl₂: Infinite chains of face-sharing Tc₂Cl₈ rectangular prisms

β -TcCl₂: new structure-type
 Tc-Tc separation of 2.136(1) Å (Tc=Tc triple bond)
 β-TcCl₂ converted to α-TcCl₂ at 450 °C with AlCl₃

Bromides

Technetium tetrabromide

Reaction between Tc metal and Br₂ in sealed tube (Tc:Br ~ 1:4)

TcBr₄: Infinite chains of edge-sharing TcBr₆ octahedra

● Tc ● Br

TcBr₄

Only group 7 binary tetrabromide characterized
 Crystallizes in the TcCl₄ structure-type
 Tc-Tc = 3.791 Å; absence of metal-metal bond

Technetium tribromide

Reaction between Tc metal and Br₂ in sealed tube (Tc:Br ~ 1:3)

TcBr₃: Infinite chains of face-sharing TcBr₆ octahedra

TcBr₃ is isostructural to MoBr₃ and RuBr₃
 Alternation short (2.828(1) Å) /long (3.143(1) Å) Tc-Tc separation
 Presence of Tc=Tc bond

Iodide

Technetium triiodide

Reaction between $Tc_2(O_2CCH_3)_4Cl_2$ and HI gas

TcI₃: infinite chains of face-sharing TcI₆ octahedra

150 °C

HI g

 $Tc_2(O_2CCH_3)_4Cl_2$

TcI₃

Only Tc binary iodide reported
Tc...Tc = 3.10 and 2.67 Å
Isostructural to MoI₃ and RuI₃

Binary Carbides

Reaction between Tc metal and graphite at 1050 °C Nature of reaction product depends on Tc:C ratio For C< 1%: solid-solution of carbon in Tc metal For 1 <C< 9%: new phase →TcC >Structure not reported

Binary Nitrides

Tc nitride formed by thermal decomposition of [NH₄]₂TcCl₆ under N₂ ≻Stoichiometry : TcN_{0.75}. ≻ Structure unknown

TcN_{0.75}

Binary Sulfides

Two sulfides reported: Tc_2S_7 and TcS_2 Tc_2S_7 : reaction between TcO_4^- and H_2S in acidic solution > X-ray structure unknown

 TcS_2 : decomposition of Tc_2S_7 at 1000 °C $\,$ or reaction between Tc metal and S in a sealed tube at 450 °C

► Isostructural to ReS₂

Binary Phosphides

Reaction between Tc metal and phosphorous in a sealed tube (1000 °C) ≻Four binary phosphides: Tc₃P, Tc₂P₃, TcP₃ and TcP₄

TcP₃: edge sharing TcP₆ octahedron

- **1. Introduction**
- 2. Metal and binary compounds
- **3. Metal-metal bonded complexes**
- 4. Aqueous solution chemistry
- **5. Summary**

Tc has high tendency to form metal-metal bonds in low oxidation state

Concept of multiple metal-metal bond introduced in 1964 for Re₂Cl₈²⁻

Metal-metal bonded dimers: M_2^{n+} units coordinated to ligands In the M_2^{n+} : d orbitals can overlap and form σ , π and δ bonds

Technetium: Tc₂⁶⁺, Tc₂⁵⁺ and Tc₂⁴⁺ unit

>500 Re and 30 Tc complexes with multiple M-M bonds reported

Complexes with multiple Tc-Tc bonds reported for Tc in the +3, +2, and +1 oxidation state

(Tc;Tc)	Complex	I	Bond multiplicity
(+3;+3)	$(TBA)_2Tc_2Cl_8$	[Tc≣Tc]	Quadruple bond
(+3;+2)	Cs ₃ Tc ₂ Br ₈	[Tc≡Tc]	Triple bond
(+2;+2)	$Tc_2Br_4(PMe_3)_4$	[Tc≡Tc]	Triple bond
(+1;+2)	Tc_8I_{12}	[Tc-Tc]	Single and quadruple bond
		[Tc≣Tc]	

 $Tc_2X_8^{n-1}$

 $Tc_2X_4(PMe_3)_4$

Tc₈I₁₂ cluster

Preparation of Tc₂Cl₈²⁻

NH₄OH, H₂O₂

(TBA)HSO₄

Successive reductions: $Tc(VII) \rightarrow Tc(V) \rightarrow Tc(III)$

TcO₂/NH₄TcO₄

34

(TBA)Tc^VOCl₄

(TBA)Tc^{VII}O₄

 $(TBA)_{2}$ Tc^{III}₂Cl₈

Preparation of dimers with Tc₂⁶⁺,Tc₂⁵⁺ and Tc₂⁴⁺ units

Tc₃Cl₉

Reaction mechanisms from (TBA)₂**Tc**₂**Cl**₈ **to Tc**₃**Cl**₉ **mimic the one of Rhenium**

Crystallization from acetone / ether for single crystal XRD → Formation of an acetone solvate: (TBA)₂Tc₂X₈· 4[(CH₃)₂CO]

 $Tc_2X_8^{2-}$

Steric effect induced by bromide in Tc₂Br₈²⁻ ion Increase of Tc-Tc separation and Tc-Tc-X angle

Compounds	Tc-Tc (Å)	Tc-X (Å)
Tc2(O2CCH3)4Cl2	2.176(1)	2.508(4)
$Tc_2(O_2CCH_3)_2Cl_4$	2.150(1)	2.312

Decrease of Tc-Tc from Tc₂(O₂CCH₃)₄Cl₂ to Tc₂(O₂CCH₃)₂Cl₄ **Influence of axial Cl ligand on Tc-Tc separation**

compound	Average distances (Å)			
	Tc-Tc	Tc-X	Tc-P	
Tc ₂ Br ₄ (PMe ₃) ₄	2.1316(5)	2.520[1]	2.441[1]	
Tc ₂ Cl ₄ (PMe ₃) ₄	2.1318(3)	2.3858[5]	2.4356[4]	

Tc₂⁴⁺ is not sensitive to the nature of coordinating halide

1. Introduction

- 2. Metal and binary compounds
- **3. Metal-metal bonded complexes**
- 4. Aqueous solution chemistry
- **5. Summary**

Non-complexing media

40

Speciation depends on Eh and pH of the solution

➤ Three oxidation states are thermodynamically stable Tc(+7), Tc(+4) and Tc(0)

In aqueous oxidizing media: Tc speciation dominated by Tc(+7) TcO_4^- (well characterized) and HTcO₄ (poorly studied)

Speciation of Tc(+7) in HNO₃, H₂SO₄ and HClO₄ Dissolution of KTcO₄ in HClO₄, H₂SO₄ and HNO₃

For [1 -15.6 M] HNO₃: colorless solutions \rightarrow TcO₄⁻

For HClO₄ and H₂SO₄ > 8 M: yellow solutions \rightarrow TcO₃OH(H₂O)₂

 $TcO_3(OH)(H_2O)_2$

Tc(+6), Tc(+5), Tc(+3) are thermodynamically unstable

 \rightarrow **Disproportionation**

Тс	Media	Reaction
+6	Basic	$2\mathrm{Tc}(+6) \rightarrow \mathrm{Tc}(+7) + \mathrm{Tc}(+5)$
+5	neutral	$3Tc(+5) \rightarrow Tc(+7) + 2Tc(+4)$
+3	Acid	$5Tc(+3) \rightarrow 4Tc(+4) + Tc(0)$

Complexing media

44

Chloride media

Four chloro- species identified in concentrated HCl

Тс	Media	Species
+6	HCl/H ₂ SO ₄	TcOCl ₅ -
+5	Cold HCl	TcOCl ₅ ²⁻
+4	Warm HCl	TcCl ₆ ²⁻
+2, +3	Warm HCl + Zn powder	Tc ₂ Cl ₈ ³⁻

TcO₄⁻ is unstable in 12 M HCl: reduction of Tc by Cl-

Cold HClCold HClWarm HCl $TcO_4^- \rightarrow TcOCl_5^- \rightarrow TcOCl_5^{2-} \rightarrow TcCl_6^{2-}$

Further reduction of Tc(IV) in warm HCl by Zn TcCl₆²⁻ + Zn \rightarrow Tc₂Cl₈³⁻ + Zn²⁺

TcCl₆²⁻ is unstable below 1 M HCl and hydrolyses

Carbonate media

Tc(IV) and Tc(III) complexes reported in carbonate solution Tc(IV): electro-reduction of TcO₄⁻, dissolution of TcO₂ or [NH₄]₂TcCl₆ ≻Characterized by UV-Visible spectroscopy

Structure unknown: monomeric or polymeric ?

Тс	Solution	Stoichiometry
+4	pH = 7.3	$Tc(CO_3)_q(OH)_n^{(4-n-2q)+}$?
	$HCO_{3}^{-} = 0.5 M$	
+3	Electro-reduction	$Tc(CO_{3})_{q}(OH)_{n}^{(3-n-2q)+}$?

No Tc carbonate solid reported

- **1. Introduction**
- 2. Metal and binary compounds
- **3. Metal-metal bonded complexes**

48

- 4. Aqueous solution chemistry
- 5. Summary

Group VII second row transition metal

Predicted 150 years ago and discovered 80 years ago

Lightest radioactive element (no stable isotopes) Two isotopes of interest

⁹⁹Tc (β^{-}): fission product of nuclear industry (6% yield from ²³⁵U) Inventory : 56 MT from spent fuel and 1.5 MT at the Hanford site ^{99m}Tc(γ): produced from ⁹⁹Mo decay, imaging agent: cardiolite 40 million treated

Inorganic chemistry

Rich redox- chemistry with 9 oxidations states Chemistry similar to Re (especially in +4 and +7 states, i.e., binary oxides) Solid-state compounds: rich and unique halides chemistry (i.e., $TcCl_2$ structure-type) Lack of data for nitrides, sulfides and carbides materials High tendency to form multiple metal-metal bond in low valent states (i.e., $Tc_2X_8^{n-}$)

Aqueous chemistry

Non complexing: 3 oxidation states are thermodynamically stable (+7, +4 and 0)Con. HCl; Tc(+6), Tc(+5), Tc(+4) and Tc(+2.5) complexes characterized Carbonate: Tc(+4) and Tc(+3) reported but not characterized

Acknowledgements

UNLV Radiochemistry Program

Professors : K. Czerwinski, T. Hartman, D. Hatchett, P. Forster

Laboratory management: J. Bertoia; Administrator: W. Johns

Past and present technetium students and post-docs: E. Johnstone, W. Kerlin, M. Ferrier, E. Mausolf, K. Childs, V. Sanders, B. Childs, J. Louis-Jean, R. Borjas and E. Balasekaran

Collaborators: A. Sattelberger (ANL), G. Jarvinen (LANL), E. Rodriguez (U Maryland), B. Scott (LANL), C. Malliakas (Northwestern U), B. Burton-Pye (Lehman College), L. Francesconi (Hunter College), W. Lukens (LBNL), P. Weck (SRNL), L. Gagliardi (U. Minnesota), T. Todorova (College de France), M. Fattahi (Subatech), R. Alberto (U-Zurich).

Upcoming Webinars

- Gross Alpha/Gross Beta by LSC
- Northern Lights Exercise
- TENORM Subtopics

NAMP website http://www.wipp.energy.gov/namp/