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and lead-210. He is also the manager of the State Hygienic Laboratory’s
radiochemistry department. May earned a B.S. in Chemistry also from the
University of Iowa in 2006. He expects to graduate in December 2018.
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Presentation: Polonium-210 and lead-210 in groundwater
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Meet the Presenters…
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and Environmental Studies from Alfred University in 2015 and expects to
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organic ligands
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Terrestrial NORM is Present in 
Groundwater
• Naturally Occurring 

Radioactive Material 
(NORM)

• Two primordial decay 
series of concern
– Uranium series
– Thorium series

• Persistent in 
environment
– Parent radionuclide 

half-lives are billions of 
years
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Groundwater is the major source of 
drinking water in Iowa
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Some NORM is Regulated in Public 
Drinking Water

• Safe Drinking Water Act (SDWA) regulates 
contaminants in public drinking water

• Maximum Contaminant Level (MCL) for NORM 
based on excessive lifetime cancer risk

• 210Po & 210Pb are not regulated directly
• Private drinking water wells are not regulated
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Polonium-210 & Lead-210 Are Hazardous

Po-210 Pb-210

• Alpha-emitter
• 138 day half-life
• Can exist as inorganic ions or 

organometallic complexes
– Organometallic complexes 

more retained, ~50%
– Po-210 is often found in a 

colloidal form in water
• Accumulates in 

reticuloendothelial tissues and 
erythrocytes

• Risk-based MCL = 1.1 pCi/L

• Beta-emitting radionuclide
• 22.2 year half-life

– Decays to Bi-210 and then 
Po-210

• Retained by body from 5-60%
– Dependent on age and diet
– Younger, higher retention
– Fasted, higher retention

• Accumulates in erythrocytes 
and bone

• Risk-based MCL = 2.2 pCi/L
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Limited studies performed on 210Po

• Some studies have been done on 210Po 
in groundwater
–Seiler, et al. - Nevada
–Harada, et al. – Florida
–Ruberu, et al. – California
–Jacobus, et al. – Minnesota

• Studies found 210Po in groundwater
–Limited by scope, geographic focus
–Areas very different geologically
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Polonium-210 and lead-210 pose 
unknown risks

• Lack of wide-scale data examining 210Po and 
210Pb in groundwater

• Alpha and beta MCLs too high to address 
potential risk

• Prevalence of NORM in private wells is unknown
• Higher potential carcinogenicity of 210Po and 

210Pb relative to other NORM
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Aim of these studies

• Identify drinking water resource 
types (private wells; surface 
supply; deep aquifer) and 
hydrogeological character (well 
depth/age, geological deposit, 
aquifer) in which elevated levels 
of regulated NORM and 
unregulated 210Po are found. 
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Study Design

• Samples collected from all over the state of Iowa
–119 samples from public water supplies
–39 samples private wells

• Samples collected in representative manner
–Based on drinking water withdrawals

• Analyzed for uranium-series radionuclides, 
various water quality parameters
–TSS, TDS, Chloride, Alkalinity, Nitrate, Ammonia, 

Phosphorus
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FY16 Public Well Sites
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FY18 Public Wells Sites
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Methods and Quality Control

• Analyses performed using a 
variety of methods
– EPA 900.0 (Gross Alpha/Beta)
– EPA 903.0 (226Ra)
– Eichrom methods (U, 210Pb)
– In-house adapted method for 210Po 

analysis
• MnO2 pre-concentration, auto-

deposition on nickel disc
• Method performance was verified 

using appropriate quality controls
– Laboratory control samples, matrix 

spikes, duplicates, reagent blanks
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Radiological Parameters Vary Across 
Aquifers
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Gross Alpha Positively Correlates with 
Well Depth
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Po-210 Distribution is Different from 
Gross Alpha
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Elevated 210Po Well Below Alpha MCL
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Gross Beta Relationship with Well 
Depth is Less Clear
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210Pb Not Related to Well Depth
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Highest 210Pb Found at Low Beta Levels
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Conclusions

• The Dakota aquifer appears different 
–Higher 210Po, U activities
–Mean gross alpha activity higher than beta activity

• Gross alpha/beta screening is inadequate for 
210Pb, 210Pb
– 210Po shows significant negative correlation with 

well depth, higher at lower gross alpha activities
– 210Pb also higher at lower gross beta activities

• All 210Po, 210Pb less than the theoretical MCLs
–But, ~7% of 210Po > ½ MCL
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Future Work

• Private Well Study
–Analyses to be completed this summer
–Comparison to active public water supplies

• Follow up on Dakota aquifer anomalies
–How is this aquifer different?
–Are these differences widespread? reproducible?
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Dangers of Uranium 

• Uranium contaminates 120 sites in 36 
states
–Mining and milling
–Nuclear Energy and Weapons
–Natural Processes

• Public health concerns
• UO2

+2 - soluble

National Research Council 2010 Science and Technology for DOE site Cleanup: Workshop summary
National Research Council (NRC) (2008), Review of the Toxicologic and Radiologic Risks to Military Personnel From Exposures to Depleted Uranium During 
and After Combat, Natl. Acad. Press, Washington, D. C.
Palmisano, A., Hazen, T., 2003. Bioremediation of Metals and Radionuclides: What It is and How It Works, second ed. LBNLe42595-(2003)
Image: https://en.wikipedia.org/wiki/Ionizing_radiation (accessed April 18, 2016)
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System of Interest
• Uranyl-phosphate:

–Stable under oxidizing conditions
–Precipitates faster and less soluble 

than non-phosphate minerals
–Can be dissolved by organic ligands: 

citrate, EDTA, acetic acid, 
bicarbonate

• Citrate:
–Produced by plant roots to mobilize 

nutrients
–Increases uranium accumulation in 

plants
Fanizza, M.F., et al. Water Resources Research, 2013. 49(2): p. 874-890.  Sowder, A.G., et al. Journal of Radioanalytical and Nuclear Chemistry, 2001. 248: p. 517-
524.  Berto, S., et al. Radiochim. Acta, 2012. 100: p. 13-28.
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Chernikovite: A Uranyl-Phosphate Precipitate 
• Chemical Formula:

(H3O)(UO2)(PO4)•3H2O

Fanizza, M.F., et al. Water Resources Research, 2013. 49(2): p. 874-890.  
Gorman-Lewis, et al.., Environ. Sci. Technol. 43 (2009) 7416-7422.

Mineral Chemical Formula Log Ksp

Chernikovite (H3O)(UO2)(HPO4)•3H2O -22.73 

Autunite Ca[(UO2)(PO4)]2•4H2O -48.36

Uranyl 
Orthophosphate

(UO2)3(PO4)2•4H2O -49.36
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Uranyl-Phosphate Precipitate 
• Synthesis:

– Mix UO2(NO3)2 and Na2HPO4

– Yellow precipitate forms immediately
– For one experiment, added citrate to Na2HPO4 solution

• Characterization:
– X-ray diffraction – chernikovite 
– Scanning electron microscope (SEM) with electron 

dispersive spectroscopy (EDS)

Fanizza, M.F., et al. Water Resources Research, 2013. 49(2): p. 874-890.  
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Wt% σ

U 52.7 0.2

O 24.7 0.2

C 15.8 0.2

P 5.5 0.1

Na 1.4 0.1
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Motivation

• Specific: to examine the kinetics and extent of 
citrate facilitated dissolution of chernikovite  
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Motivation
• Specific: to examine the kinetics and extent of 

citrate facilitated dissolution of chernikovite 
(UO2HPO4•4H2O) 

• Expanding work and collaboration: 
micromodels, plant uptake, and field scale 
studies

34
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Motivation
• Specific: to examine the kinetics and extent of 

citrate facilitated dissolution of chernikovite 
(UO2HPO4•4H2O) 

• Expanding work and collaboration: 
micromodels, plant uptake and field scale 
studies

• Broader Impact: to gain a better 
understanding of the fate of uranyl-phosphate 
precipitates in the environment
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Research Questions

1. What is the relationship between citrate
concentrations and dissolved uranium from 
chernikovite?

2. When does the reaction reach steady state?
3. Do citrate and phosphorous in solution 

sorb to the chernikovite surface?
4. Does the citrate affect the remaining solid?
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Experiments

• Batch dissolution – varying citrate 
concentrations

• Continuous stirred-tank reactor (CSTR) –
varying citrate concentrations and flow rate

• Isotope sorption study with 32P and 14C
• Post dissolution analysis of precipitate – Raman, 

theoretical simulations, x-ray diffraction (XRD)
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Dissolved Uranium Increases with Citrate

Dissolution of chernikovite in a batch experiments for 
12 hours with 12 different concentrations of citrate at 
pH 4
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Continuous Stirred-Tank Reactor (CSTR) Experiments

• Enable measurements of rapid reactions
• Minimizes transport phenomena
• Experiments

– Varied citrate concentration: no citrate, 0.1 mM, 1 mM, and 10 
mM

– Pretreatment: Wash for 10 reactor volumes (RV) with 10 mM
NaCl, citrate for 15 RV

– Varied flow: Wash, 1 mL/min, 0.5 mL/min, 0.25 mL/min
– Constant pH of  ̴ 4
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Reaching Steady State – CSTR Results

Dissolution of  chernikovite in a continuously stirred tank reactor with four different 
concentrations of  citrate (denoted by marker color) and three different flow rates 
(denoted by marker shape) at pH 4
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Fast Citrate and Phosphorous Exchange

After 24 hours, a 0.1 mM citrate and 
chernikovite batch system was spiked with 
32P and 14C labeled citrate.
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Raman – Structure Changes

• PO4
-3 stretching: 986 – 1020 cm-1

• UO2
+2 stretching: 821 – 867 cm-1

• Downshift in UO2
+2 peak with 

increasing citrate concentration
• Theoretical simulation: 1:2 

uranyl to citrate ratio with 
middle carboxylic group

Post CSTR Chernikovite and 
Theoretical Simulations
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XRD – Structure Changes
43
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Research Questions        Research Findings
1. What is the relationship between citrate 

concentrations and dissolved uranium from 
chernikovite?

a) The presence of citrate increases the concentration 
of mobile uranium.

b) Citrate surface saturation or reprecipitation 
hinders the dissolution. 

2. When does the reaction reach steady state?
Steady state dissolution of chernikovite was 
achieved within 30 min but only after the 
precipitate was pre-treated with citrate to achieve a 
more uniform chemical environment for 
dissolution.
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Research Questions        Research Findings

3. Do citrate and phosphorous in solution sorb to 
the chernikovite surface?
Phosphorous and citrate in solution exchanges 
quickly with the phosphorous and citrate on the 
mineral surface, with possible re-precipitation of 
phosphate.

4. Does the citrate affect the remaining solid?
Citrate alters the structure of the remaining 
chernikovite.
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Broader Impact

• Uranyl-phosphate minerals may not be as 
immobile as originally thought
–Soil rich in organic matter
–Bacteria processes
–Plant exudates
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Nuclear Waste clean-up

 Large amounts of radioactive waste 
began to accumulate in the 1940s as 
a byproduct from WWII and then 
the Cold War. 

 A deep geologic repository was 
ultimately recommended as the best 
option for long-term disposal by the 
National Academy of Sciences.

During the 1960s, the Chihuahuan
desert of southeastern New Mexico 
was chosen to be an appropriate 
site. 
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Repository Storage for Transuranic Waste

What is TRU Waste?
TRU Waste (Transuranic 
Waste) – radioactive 
waste containing >100 
nCi/g of alpha from 
elements greater than or 
equal to atomic # 92 (U)

How much waste is at 
the WIPP*?
 90,600 m3 CHTRU
 360 m3 RHTRU

*received through 11,900 
shipments as of 2014DOE Linking Legacies
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Waste Isolation Pilot Plant (WIPP)

 The WIPP is a deep 
geologic repository for 
the permanent 
disposal of radioactive 
waste that is a 
byproduct from the 
nation’s nuclear 
defense program.

 Only plant in the world 
to handle and 
permanently dispose of 
transuranic waste. 
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WIPP Release Scenario

 In the most likely WIPP 
Release scenario, human 
intrusion can lead to direct 
and/or long-term brine 
release (US DOE 1995, US 
DOE 1996, Perkins et al., 
1999).

 Once the brine is released, 
it may proceed through the 
Rustler formation (the 
most transmissive layer) 
and pose a potential threat 
to the environment 
(Perkins et al., 1999)
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Lack of Experimental Sorption Data for 
Trivalent Actinides/Lanthanides for Dolomite

Previously, LogKd’s for dolomite highly variable, reported from 3.4 – 6

Brady et al. 1999: limited residence time reactor measured 
Kd’s, exceeded Nd solubility for pH 6 – 8, limited pH range for 
Am(III) (pH 3 – 6), limited conditions (0.05 and 0.5 M NaCl)

 Perkins et al. 1999: intact-core experiments, no breakthrough 
recorded after many months of injection, possible precipitation of 
Am(III)

Brush and Storz 1996: batch sorption experiments in brines, 
no pH reported for Am(III) Kd’s, limited Nd(III) Kd’s for 
atmospheric CO2 in 0.05 M NaCl
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OBJECTIVES

 The focus of this research is to investigate sorption processes of 
neodymium to dolomite minerals from the Rustler formation 
above the WIPP repository.

Relevance: These data will decrease uncertainty in the WIPP 
risk assessment models by decreasing the current range of 
sorption parameters for the trivalent actinides.

Investigated the effects of 
1. Ionic strength (Borkowski et al., 2009; Emerson et al., 2018)
2. Ligands (Emerson et al., 2017-18; Roach et al., 2008)
3. Microbes (Zengotita et al., 2017) 
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Neodymium Background
So why are we using Nd for this 
work?
Nd3+ exhibits similar chemical 

behavior to   Am3+ as it exists in the 
same oxidation state (Silva and 
Nitsche, 1995)

Nd solubility is ~50 ppb at pH 8.5
 Strong carbonate complexation occurs
 Modeled in 0.1M solution

 Solubility in 5.0 M NaCl has been 
measured from 715 to 0.1 ppb (5x10-6

to 1x10-9 M) at pH 8.5 in over and 
under-saturation experiments 
highlighting that we still do not fully 
understand the high IS system 
(Borkowski et al., 2009).
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Due to Nd solubility at high IS systems and the carbonate complexations: experiments are conducted at 20ppb ~pH 8 (Emerson et al., 2018)�
pH of 8.5-9 is at the WIPP, over and under saturation experiments in earlier studies
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Experimental Design: Mini Columns
Initial Conditions
 2.2 cm column with (1 cm of dolomite + 

fittings) (Top figure)

Kohlen Pump (Bottom figure) pushes 
electrolyte background + Nd into mini-column

Effluent is collected in 13x100 mm polystyrene 
tubes in Eldex fraction collector 

Experimental Design inspired by: 
 Dittrich, T.M., Ware, S.D., Reimus, P.W. (2016) Mini-

columns for Conducting Breakthrough Experiments: 
Design and Construction, in: Technologies, U.S. DOE. 
Los Alamos National Laboratory, Los Alamos, NM. LA-
UR-15-24392

Presenter
Presentation Notes
http://www.eia.gov/nuclear/
https://books.google.com/books?id=dgoAAAAAMBAJ&pg=PA14&dq=NAS+1966+report+radioactive+waste&hl=en&sa=X&ei=P56JVYniCIOigwSc4YLYCw&ved=0CCcQ6AEwAA#v=onepage&q=NAS%201966%20report%20radioactive%20waste&f=false
http://energy.gov/sites/prod/files/2013/04/f0/brc_finalreport_jan2012.pdf

Kohlen pump- syringe pump




Experimental Design: Batch Experiments

 Initial Conditions
 Variable concentrations of dolomite 0.5, 

1.0, 5.0 g/L
 Background electrolyte of 0.01 to 5 M 

total ionic strength [3 mM NaHCO3 + 
NaCl] + 20 pbb Nd + ligands

 Sampling Protocol
 Variable time measurements:15 minutes 

to 60 days
 15 minute settling, centrifugation, or 

filtration prior to sampling
End over end mixer with variable solid 
to liquid ratio batch sorption 
experiments
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Carbonate complex also repressents approx equilibrium with dolomite and air




High Ionic Strength Systems
Why high Ionic Strength?
The WIPP repository that 

contains the nuclear waste 
is a salty layer (up to 7.4 
M).

High ionic strength 
systems are not as well 
understood (Borkowski et 
al., 2009).

What is pCH ?
pCH values normalize the ionic 
strength in the solution in terms 
of H+ ion concentration 
(Borkowski et al., 2009).

The pH measurement is not 
straightforward in high ionic 
strength solutions due to changes 
in activity.

Eqn. 1: ∆pH = 0.1868 I + 0.073
Eqn. 2: ∆pH = pCH − pH
Eqn. 3: 𝐼𝐼 = 1

2
𝛴𝛴𝑐𝑐𝑖𝑖𝑧𝑧𝑖𝑖2

Relevant Equations
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Ionic Strength via Equation 3, based on the summation of the ions in solution, Z=charge, C= concentration




Gran Titrations at Variable IS

𝑝𝑝𝑝𝑝 = 𝐴𝐴 + 𝑝𝑝𝐶𝐶𝐻𝐻

LEGEND:
Blue Our data
Navy (Rai et al., 1995)
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Releant eqn pH=A+pcH
That’s how we’re correcting it




Results: Variable Ionic Strength 

Sorption (as Kd,con in mL/g) with respect to ionic strength for 5 g/L dolomite and 
initially 20 ppb Nd (Emerson et al., 2018)
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1. Across the range of ionic strengths investigated in this work, the rate of removal of Nd increases by approximately an order of magnitude. 
2. KD = Concentration of metal ion in Solid Phase, µ𝑔/𝑔)  Concentration of metal ion in Aqueous Phase, µ𝑔/𝑚𝐿 
Make sure you understand the assumptions in this, major points:
Assumes equilibrium sorption (i.e. not time dependent kinetics)
Assumes a linear relationship (hence the solid phase divided by the aqueous phase)
Assumes complete reversibility of sorption (this is not generally valid for our strongly sorbing actinides and lanthanides, I can share some literature on this with you in the future)
Kd=At a certain temperature, the ratio of the concentrations of a solute in each of the solvents is always constant. The ratio is known as the Distribution Coefficient. 




It is likely that the removal of Nd increases as ionic strength increases and affects
mineral dissolution and precipitation processes. Previous research (Morse et al., 2002;
Lucero et al., 1998) has shown that Nd is removed by (1) a fast adsorption process
followed by (2) a slow co-precipitation process.

Results: Variable Ionic Strength
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1. As the solubility of dolomite increases with increasing ionic strength, we hypothesize that the potential for co-precipitation of Nd also increases with ionic strength.
2. 



Results: Variable Ionic Strength
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Why are the results from 
both experiments 
different? 
 Different removal processes 

in different systems due to 
the reaction times

 Two reactions are occurring 
in batch experiments (1) fast 
adsorption (2) slow process 
with co-precipitation

 Equilibrium is not reached 
in the mini-column due to 
the short reaction time, i.e. 
co-precipitation does not 
occur. (Emerson et al., 2018)
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In comparison to the batch kinetics experiment, the mini-column results suggest that the 0.1 M and 5.0 M Ionic Strength are very similar in terms of adsorption. 

What does this mean?
We are seeing two different processes! Adsorption and co-precipitation
Retention is aroudn 20mins




Biocolloid Transport of Nd
Sub-objective: To observe the behavior 
of Chromohalobacter and its effect on the 
mobility of Nd in the presence of dolomite 
minerals. 
We considered: 
(1) Co-transport of Nd with microbes and 
(2) Re-mobilization of Nd adsorbed to 
dolomite by microbes (Zengotita et al., 
2017).

WHY CHROMOHALOBACTER? 
 Isolated from near the WIPP site,
 Can thrive in high salt concentrations which 

are relevant to WIPP-related conditions,
 Very little experimental data exists on the 

behavior of Chromohalobacter species for 
WIPP-related conditions

(Dittrich, T.M., et al, 2017)
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Results: Co-transport of Nd with Biocolloids

Results for Column with initial injection of 
Chromohalobacter + Nd + brine
 Unfiltered (left): Highlights good correlation of Nd

and Microbes 
 Filtered (right): Suggest majority of aqueous 

neodymium associated with microbes (<3% dissolved)
 (Zengotita et al., 2017) *Note change in y-axis between results

LEGEND:
Blue Nd unfiltered recovery
Red Nd filtered recovery
Green microbe recovery
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Margin of error is because of instrumental error-analytical issues




Results: Remobilization of Nd by Biocolloids
Results for column with 
initial injection of Nd
 Strong sorption onto the 

dolomite
 Microbial recoveries show 

no association with Nd
 No remobilization

Summary
 The microbes were unable 

to pull Nd off the dolomite.
 (Zengotita et al., 2017)

LEGEND:
Blue Nd unfiltered recovery
Red Nd filtered recovery
Green microbe recovery

Results for column with initial injection of 20 ppb 
Nd + brine followed by injection of 
Chromohalobacter + brine only (only unfiltered 
data presented)
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Effect of EDTA on Nd Transport
Sub-objective: 
The main focus of this task is to 
investigate the binding effect of 
the EDTA on Nd in the aqueous 
state and observe the potential 
removal of the contaminant on  
the surface of the dolomite. 

Why EDTA? 
 EDTA concentrations in the WIPP could 

reach 0.3 mM!
 EDTA is used in nuclear decontamination 

chemistry because of its ability to bind 
radionuclides and remove them from 
contaminated surfaces (Roach et al., 
2008).

 It is persistent in the environment which 
makes it relevant in studies of radioactive 
waste disposal.

 Forms stable complexes with cationic 
metals (for example: Nd3+)
 (Rizkalla et al., 1989)
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DOE has over 83 metric tons of EDTAin the radioactive waste storage tanks, so inevitably it’s at the WIPP 
Most studied complexing agents 
The speciation of complexes changes in response tophysicochemical conditions. Some systems have thereforebeen studied as a function of pH, to address changes as the organic complexing agent becomes deprotonated and as hydrolysis becomes important *we are doing 
Previous studies with EDTA and PUIV speciation had many challenges and contrasting views at acidic and neutral pH
The use of organic complexing agents as decontaminationagents infers a high solubility. Increase solubility of Nd and decrease adsorption
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So… what does this graph mean?
 At 24 hours, very little sorption of Nd to dolomite with EDTA
 Around the 30 day period, the dolomite started to compete with the EDTA in 

respect to Nd sorption.
 The 60 day period demonstrates that the EDTA was able to complex the Nd and 

out-compete the dolomite 
Note: The complexation that is adsorbing to the dolomite is the Nd-carbonate

Results: Effect of EDTA on Nd Transport
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@30 and 60days- competition, some Nd adsorping to dolomite not a lot
*Overall EDTA could be a problem because much smaller kd vales (sorption values), thus EDTA is  bad since he can mobilize the actinides and transport them through the formations in the release scenario

Remind me that we want to talk about what kind of complex is adsorbing to dolomite. Is it Nd, Nd-carbonate, Nd-EDTA?




These experiments updated parameters for risk assessment models on the 
environmental behavior of the actinide series elements. 
1. In the absence of ligands, strong sorption of Nd to dolomite occurs from 0.1 – 5.0 

M IS.
2. Ionic strength has an impact on Nd removal processes in the absence of flow 

potentially due to its effect on mineral dissolution and co-precipitation processes. 
3. Microbes can mobilize Nd if they interact with Nd first but cannot remobilize the 

Nd from dolomite. However, different microbes may interact more strongly.
4. EDTA reduces sorption to dolomite (Kd,cond). 

Why is this relevant?
 These data help us to better understand the potential for transport of the actinide 

elements from the WIPP and allow us to identify which parameters may have the 
greatest impact on mobility. 

 The results suggest that the WIPP should consider the environmental conditions 
(based on the salt formation, high IS systems), presence of EDTA (found in storage 
and usage) and microbes. These data demonstrate that there are multiple potential 
transport vectors for actinides in the storage of nuclear waste.

Conclusions
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So why is this important? 
We discovered that different removal processes showed sorption and adsorption. It suggested that different reaction times affect the equilibrium of the mini-column experiment (leaving the higher IS to have the same saturation as the 0.1M) while the batch suggested that there was some adsorption onto the sub-surface of the dolomite. 
Overall, the experiments conducted in this work found that high ionic strength systems have an effect on different removal processes (batch and mini-column), microbial interactions in the aqueous state mobilize contaminants of concern in biocolloids and EDTA can successfully reduce the sorption to the dolomite, complex the contaminant in the aqueous state and transport these materials if there was a brine release. 
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