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Scope 

• Goal is to use chemical processes to isolate an isotope of interest from 
a complex sample matrix.  

• Need careful laboratory work and procedures based on known and 
reliable chemistry to produce pure samples for analysis 

– Note these methods are not unique to nuclear forensics. Rather they are 
widely applied. 

• Radioanalytical methods are generally applied to aqueous liquids so 
assumption in todays lecture is that sample dissolution will have 
already occurred  

– A good overview of sample preparation and dissolution was given by Prof. 
Amy Hixon in the April 21, 2016 webinar “Sample Matrices and 
Collection, Sample Preparation” 

• https://www.icln.org/webinars/sample-matrices-and-collection-
sample-preparation/ 

– A presentation on Analytical chemistry of uranium and plutonium was 
given by Prof. Ralf Sudowe on October 11, 2012 

• https://www.icln.org/webinars/analytical-chemistry-of-uranium-and-
plutonium/ 
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Relevant chapters 

• Nuclear Forensics Analysis by Kenton J. Moody, 
Ian D. Hutcheon, and Patrick C. Grant 

–Chapter 4: Chemistry and Nuclear Forensic 
Science 

–Chapter 8: Collateral Forensic Indicators 

–Chapter 10: Radiochemical Procedures 
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Other Good Resources 
• MARLAP 

– MARLAP Chapter 12: Laboratory Sample Preparation 

– MARLAP Chapter 13: Sample Dissolution 

– MARLAP Chapter 14: Separation Techniques 

• Radiochemistry Monographs 

– http://library.lanl.gov/radiochemistry/elements.htm  

• Review texts 

– Chemistry of the Actinide and Transactinide Elements, 
http://www.springer.com/chemistry/inorganic+chemis
try/book/978-94-007-0210-3 

– Chemistry of Plutonium, J. Cleveland, 1979 
• Only used texts available 
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Outline 

• Introduction 

• Sample considerations 

• Use of tracers 

• Solvent Extraction 

• Ion Exchange 

• Extraction Chromatography 
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Chemical separations and analysis in 

nuclear forensics 

Keegan et al., Anal. Chem. 2016, 88, 1496−1505 Schwantes et al., Anal. Chem. 2009, 81, 1297−1306. 
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Sample matrices 
• Samples may vary in composition, size, physical form, 

and purity 

– Soil, sediment 

– Biota 

– Water 

– Gas 

– Solids (anthropogenic metallic or metal oxide solids) 

– With or without traditional forensics evidence present 

• This presentation will cover radionuclide separation 
procedures required when analyzing complex, 
heterogeneous samples 

• Procedures are generally applicable to aqueous liquids 
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Considerations of sample matrix and 

processing 

• Potentials for sample loss during processing 

–Volatilization 

–Reactions between sample and container 

–Losses due to precipitation/dust deposition 

• Contamination and cross contamination 

• Cleaning of labware 

• Complete dissolution of a solid sample 

• Loss of secular equilibrium during 
radiochemical separation 
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Carriers and Tracers 
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Carriers and Tracers 
• Carriers and tracers are frequently added before sample 

manipulation to subject them to the same chemical 
treatment as the target analyte 

• Many separations are seeking 10-15 to 10-10 molar 
concentrations of ions 
– Example 210Po 500 dpm = 5E-14 g 

– Common analytical techniques cannot be used: spectroscopy, 
gravimetric analysis, electrochemistry, etc. 

– Such trace concentration can be drastically effected by 
macroscopic constituents 

• Solution is to add:  
– Carrier: macroscopic stable isotope 

– Tracer: microscopic radioisotope  

– Note: the carrier or tracer isotopes must be different that the one 
you are looking for (unless you are using the method of standard 
additions) 
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Tracers 
• Tracers are used to determine chemical yield of a radionuclide of 

interest during physical/chemical separations 

• Generally prefer isotopic tracer (i.e. the same element but a different 
isotope) but in some cases this is not possible: 133Ba frequently used 
as a tracer for 226Ra/228Ra separations 

• Generally tracer should be at microscopic mass concentrations and 
not add “mass” of the analyte of interest to the system 

• Since tracer isotope will behave similar to isotope of interest, 
percent recovery of tracer can be used as chemical yield for isotope 
of interest 

• Example with 242Pu or 238Pu tracer when doing analysis for 239Pu 
– Add 238Pu to sample at a few times the expected 239Pu concentration 

– Perform radiochemical separation of Pu 

– Quantify the mass/activity of 238Pu and 239Pu  

– Assume 239Pu and 238Pu behave similarly 

 
238

238

mass/activity of Pu recovered
Chemical Yield=Y=

mass/activity of Pu added

239
239 [ Pu]measured

[ Pu]sample=
Y
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Carriers 
• Based on the concept that separations are more easily 

accomplished when performed on a macroscale 
• Add carrier to raise the chemical concentration of an 

analyte 
– Example stable Sr carrier for 90Sr precipitation 
– Stable Sr: 84Sr, 86Sr, 87Sr, 88Sr 
– Same number of protons and electrons so will behave 

chemically similar (i.e. chemical phenomena such as 
precipitation, complexation, and redox chemistry will 
apply equally to all isotopes on this scale) 

– If 99.95% of stable Sr precipitates as SrSO4(s) then 
99.95% of 90Sr will precipitate as well 

• Therefore, a carrier can be used to increase the 
effective chemical concentration of a radionuclide and 
be used as a chemical yield indicator (gravimetrically) 
– Example: added 10mg Sr and recovered 9.5 mg => Chemical 

yield is 95%  
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Hold-back carrier 

• Carrier that is added to improve separation of 
one radionuclide over another at low 
concentrations 

• Regular carrier: separate radionuclide of interest 
from solution 

• Hold-back carrier: keep interfering radionuclide 
in solution while radionuclide of interest is 
precipitated.  

• Think complexation!  
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Method of Standard Additions 
• Typically employed when a complex matrix is encountered and the influence 

of other ions on the separation or measurement is unknown 

• Generally when a calibration curve is used, the calibration standards are 
prepared from pure solutions 

• When the sample may be present in an unpure solutions, the calibration 
standards may not be valid 

• Method of standard additions is essentially generating a calibration curve 
with spiked samples  

• Run analysis with unspiked sample then run analysis of several samples with 
various concentrations of the analyte of interest spiked into each sample. 

• Generally want samples spanning multiples of 3x to 5x the expected 
concentrations 

 

 

 

 

• Note: This is typically done without a tracer and it is assumed that the 
chemical yield is consistent for all samples. A tracer can be used to gain 
accuracy 

Example: expect  5 dpm 239Pu 
Sample Spiked 239Pu (dpm) 

A 0 
B 15 
C 25 
D 75 
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Solvent Extraction (i.e. liquid-liquid extraction) 
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Solvent extraction 
• Solvent extraction = the process of selectively removing a 

solute from a liquid mixture with a solvent. Separation is 
based on unequal distribution of a solute between two 
immiscible solvents   
– i.e. aqueous and organic solvents 

– [An]aqueous   ≠  [An]organic 

• Ions (particularly highly charged actinides) are strongly 
hydrated and will likely remain in polar aqueous phases 

• Extractants can be added to complex the solute and 
generate a species which will extract into the organic 
phase 

• Generally lipophilic complexants with O, N, S donor 
atoms used as extractants 
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Solvent Extraction Procedures 
• Mix organic and aqueous phases to form a fine 

dispersion of each solvent  
• Then separate into two distinct layers 
• Once equilibrium is achieved, the concentration of 

solute in one phase is directly related to the 
concentration in the other phase by a distribution 
coefficient (Kd):  

  Kd = [M]organic/[M]aqueous (unitless number) 
• Example: Assume equal volumes are used for an 

extraction and a Kd of 60 is determined:  
– 60x is in the organic phase  
– 1/61x is in the aqueous phase 
– With increasing Kd, more solute will be detected in the 

organic phase  
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Distribution Ratios 
• Solvent extractions are repeated extractions to 

quantitatively extract a solute from a liquid 

• Kd are useful terms but do not contain additional 
speciation information  

• Consider the dimerization reaction:  2[A]org  [A2]org 

– Dimerization constant Kdimer 

• Distribution ratio is an alternative form on the Kd which 
can account for specific species of interest 

 

 

• Can observe changes in Do/a in terms of changes in 
chemical speciation 

• Extraction factor (Ef) accounts for volumes as:  
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• Example: cation extraction 

–Want high Kd for Mx+ 

–If Kd of Do/a ~1, may need multiple extractions 

–Solubility of Mx+ in organic phase should be high 

–Want rorganic and raqueous to be very different to 
promote disengagement 

–If too close an emulsion may form 

 

 

Solvent Extraction 
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An(IV) = An4+ 

An(V) = AnO2
+ 

An(VI) = AnO2
2+ 



Extraction Classes 

• Ion Pair Forming Extractants (or Liquid Anion  or 
Cation Exchangers) 

• Micellar Extractants 
• Solvating Extractants 
• Synergistic Extractants 

 
• Each based on different chemical processes 
• High dielectric constant of water supports presence 

of charged ionic species as discrete molecules 
• Low polarity of organic solutions demands close 

contact between cations and anions => solutes are 
expected to be discrete electroneutral species 
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Acidic Extractants 
• Liquid ion exchangers, chelating agents, micellar systems 

• Exchange a number of monovalent ions (H+) equivalent to the formal 
charge of the extracted cation 

• Liquid/liquid cation exchangers/chelators 

– Mx+(aq) + nHLorg  MLn,org + x-nH+ 

• Micellar extractants 

– Mx+(aq) + (HL)n,org  MHn-xLn,org + x-nH+ 

• Implies that extraction of metals into organic phases favors low acidity 

• Metal ion can be stripped at high acidity 

 

• Example: HDEHP, bis(2-ethylhexylphosphonic acid) 

• Two P-O-C alkyl ester bonds which are subject to radiolytic instability 

• Make phosphonic (RO)P(O)OH group into phosphinic R2P(O)OH to 
increase radiolytic stability 

• Greater basicity of functional group => stronger metal ion binding 
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Solvating Extractant Systems 
Mn+(aq) + nX-aq +  nSorg  MXnSn,org 

 
• Tributyl phosphate is one of the most important solvating 

extractants for U and Pu purification  
– Basis of PUREX process (Plutonium and Uranium Recovery by 

Extraction) 
– Extracts U and Pu and leaves Np, Am, Cm, fission products 

behind 
– Pu4+  + 4NO3

- + 2TBP  Pu(NO3)4(TBP)2 

– UO2
2+ + 2NO3

- + 2TBP  UO2(NO3)2(TBP)2 
 

• Current efforts are to include another extractant to recover 
minor actinides to reduce toxicity of waste 
– CMPO (octyl(phenyl)-N, N-dibutyl carbamoylmethyl phosphine 

oxide) - TRUEX 
– DIAMEX (Diamide Extraction) 
– Diglycolamides (N,N,N′,N′-tetraoctyl diglycolamide (TODGA)) 
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Ion-Pair Formation Systems 

Mn+ + nX-(aq) + A+X-(org)  MXn+1Aorg 

 
• Tertiary amines R3NH+X- and quarternary amines 

R4N+X- 

• Chemistry impacted by salt and acid concentration 
• Example: Aliquat 336, tri(C8-10 alkyl)methylammonium 

nitrate 
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Solvent Extraction Reagents 
Multiple References, See Reference Sheet 

Reagent Conditions An(III) An(IV) An(V) An(VI) 

TTA, C8H5O2F3S  

Thenoyltrifluoroacetone 

pH 0 Aqu Org Aqu Aqu 

pH 4.5 Org Org Aqu Org 

HDEHP, [CH3(CH2)3CH(C2H5)CH2O]2PO2H  

bis(2-ethylhexyl)phosphoric acid 

pH 0 Aqu Org Aqu Org 

pH 4.5 Org Org Aqu Org 

PMBP, C17H14N2O2 

1-phenyl-3-methyl-4-benzoyl-5-pyrazolone 

pH 0 Aqu Org Aqu Aqu 

pH 4.5 Org Org Aqu Org 

DBM, C15H12O2,  

1,2-Diphenyl-1,2-propanedione 

pH 5.0-5.5 Aqu Org Aqu  Org 

pH 8 Org Aqu Aqu Org 
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Solvent Extraction Flow-sheet: Neutral pH 
Satio and Choppin, Analytical Chem., 1983, 55, 2454-2457 
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Solvent Extraction Advantages and 

Disadvantages 
• Advantages 

– Separate large amounts of 
material 

– Rapid separation 

– Very selective 

– Simple equipment required 

– Distribution coefficients often 
independent of concentration 
down to trace levels 

 

• Disadvantages 

– Flammable solvents 

– Emulsions interfere 

– Can be effected by small 
impurities or changes in 
chemical form during 
extraction 

– Multiple extractions may be 
required 

– Colloidal species cannot be 
extracted 
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Ion Exchange and Extraction Chromatography 
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Chromatography Column Dynamics 

t1 t3 t2 t4 t5 t6 t>>6 

t5 t>>6 

Chromatography = separation process based on unequal distribution of 

substances between a mobile phase and a stationary phase 

=R-H+ + A+  =R-A+ + H+ 

=R-H+ + B+  =R-B+ + H+ 

 
Kd = Cs/Ca 
   Cs = analyte conc per gram of resin 

   Ca = analyte conc in solution 

   Same as Kd in sorption reaction 

Separation factor (a) 

    a = Kd,A/Kd,B  
 

 

 

=A 

=B 
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Overview 

• Ion exchange/ion chromatography = based on 
reversible exchange between a mobile liquid phase 
and a solid stationary phase 

• Ion exchange  
– Solid ionic phase interacts with metal ion of opposite 

charge 
– Resin competes with ion solvent interactions 

(hydration and complexation) through ion-dipole 
interactions and hydrogen bonding 

– Resin is insoluble but permeable inert polymeric 
matrix containing fixed charge groups (exchange sites) 
associated with mobile counter ions of opposite charge 
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Resin Properties 
• Anion exchange 

– R+A-  + B-  R+B- + A- 

• Cation exchange 

– N-X+ + Y+  N-Y+ + X+ 

• Ideal IX resin properties 

– Hydrophilic structure 

– Reproducible form 

– Effective IX capacity 

– Rapid exchange rate 

– Chemical stability 

– Physical stability 

• Resins are commonly prepared by copolymerization and 
functionalization of styrene and divinylbenzene 
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Properties of Resins 
• Natural resins: zeolites, hair, soils 
• Synthetics:  

– functionalized organic polymers 
– Acid or base groups 

• Amines, phenols, carboxylic acids, sulfamic acid 

– Typical cation exchange 
• Sulfonate, RSO3

- 

• Carboxylate, RCOO- 

 
– Typical anion exchange 

• Quaternary amines, RNH3
+ 
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Anion exchange processes 

+    Pu(NO3)6
-2     
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Anion Exchange Distribution Coefficients in HNO3 
MARLAP, 2004 
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Anion Exchange Distribution Coefficients in HNO3 
MARLAP, 2004 

• Extraction of tetravalent and hexavalent actinides tends to 
increase with increasing [HNO3] up to approximately 8 M then 
decrease.  

• The increase is due to formation of anionic nitrate complexes 
such as hexanitrato Pu(IV) (Pu(NO3)6

-2) 

• In concentrated acids, competition from high NO3
- 

concentrations hinder removal of Pu(IV) 
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Cation Exchange Distribution Coefficients in HNO3 
MARLAP, 2004 
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Physical Properties – Size and Form 

• Particle size 
– Size based on mesh screen particles can pass through 

• 40-300 mm  (40-50 mesh) 

• ~300 mm (50 mesh) 

• ~150 mm (100 mesh) 

– Larger particle size = faster flow rate 

– Decreasing particle size decreases time required to reach equilibrium but 
also decreases flow rate 

• Physical form 
– Smooth spherical beads 

– Macroporous resins, created during polymerization 

– Pore size varies but can be up to 700 m2/g 

• Cross-linking: degree of linkage between polymer layers 
– High Crosslinking = more mechanical strength, less swelling, 

hard/brittle resins 

– Low Crosslinking = considerable swelling, gelatinous resins, faster 
kinetics 
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Chemical Properties 
• Reaction has equivalency, i.e. progresses 

stoichiometrically 
– Ca2+ + 2R-H+  (2R2-)Ca2+ + 2H+ 

• Capacity: the number of sites per mass of resin 
(specified as dry weight or wet weight)  
– Example: Dowex 50 x 8 has 5.1 meq/gdry 

• Selectivity for counter ion 
– If solution contains a counter ion different from the 

original, a different equilibrium may be reached 
– Hence, the need for “washing” resins 
– The form of the resin will depend on the concentration 

of counter ions 
 
• Ex: RSO3

-Na+ + K+ + Cl-  RSO3
-K+ + Na+ + Cl- 
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General Resin Selectivity 
• In dilute solutions, resin will show preference for ions of higher charge 

• Higher polarizability and lower degree of solvation (favored by low 
charge and large size) the more strongly an ion will be adsorbed 

• Selectivity increases with increases in atomic number within same 
periodic group 

• Tetravalent actinides are generally sorbed much stronger than most 
metal ions 

• As cross linking increases, resins become more selective towards ions of 
different sizes 

Element 
Formal 
Charge Kd 

Pu 4 978 
La 3 1.4 
U 2 3.9 
Bi 2 3.8 

Fe,Al,Ni,Co 3 ~0 
Cu, Zn, Sr, Sn 2 ~0 
Cs, Ba, Na, Li 1 ~0 

Kd = [M]resin/[M]aqu 
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Types of Resins 

• Strong Cation Exchange (R-SO3
- as Na+ or H+ form) 

– Absorbs cations from weak acid solution 

– Elute cations from strong acid solutions 

– Not selective for Pu 

– 3(R-SO3H) + Pu3+  (R-SO3)3Pu + 3H+ 

• Strong Base Anion Exchange ((R-N(CH3)3
+ 

– Takes advantage of formation of strong anionic complexes 
in strong acid solutions (i.e. Pu(NO3)6

-2, Th(NO3)6
-2) 

– Can be eluted by weak acids, possibly with the addition of a 
reducing agent 

– Normally run in HNO3 

 

2(R-N(CH3)NO3) + Pu(NO3)6
-2  (R-N(CH3))2Pu(NO3)6 + 2 NO3

- 
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Example: lanthanide separation using cation exchange and                     

a-hydroxyisobutyrate (a-HIBA) 

 

Nash and Jensen, Separation Science and 
Technology 2001, 36, (5-6), 1257-1282 

Smith and Hoffman, Journal of Inorganic and Nuclear 
Chemistry, 1956, 3, (3-4), 243-247. 
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Example: lanthanide separation using cation exchange and                     

a-hydroxyisobutyrate (a-HIBA) 
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Example: Actinide separation using HIBA and cation 

exchange 

Figure: Silva, R. J., Fermium, Mendelevium, Nobelium, and Lawrencium. In The Chemistry 
of the Actinide and Transactinide Elements, Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds. 
Springer: Netherlands, 2006; p 3442. 
Figure based on data from Choppin et al., J. Inorg. Nulc. Chem., 1956, 2, 66-68. 
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FB-Line Cation Flowsheet at SRNL –  
Images Courtesy of Bill Crooks, LANL 
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Extraction Chromatography 
• Extraction Chromatography = “Solvent extraction on a bead” 

• Separation based on unequal distribution (i.e. partitioning) of 
substances between two immiscible phases 

• Combines selectivity of liquid-liquid extraction with ease of an ion 
exchange resin 

• Becoming more desireable than LL extraction because it is generally 
faster, generates less waste, and is more efficient 

 

 

 

• Liquid-Liquid Extraction -Advantages 

• Rapid, selective extraction 

• Wide scope of applications 

• Simple equipment 

• Coefficients independent of 

concentration 

 

 

 

 

• Liquid-Liquid Extraction – 

Disadvantages 

• Cumbersome for large samples 

• Toxic/flammable solvents 

• Multiple extractions required in 

many cases 

• Emulsions and third phase 

formation common 
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Extraction Chromatography 

• D = volume distribution ratio, ratio of 

concentration on solid versus aqueous 

phase 

• Dw = weight distribution ratio 

• Ao-As = activity sorbed onto known 

weight of resin 

• As = activity in known volume initially 

• mL = volume of aqueous phase 

• g = mass of resin  

• k’ = capacity factor, number of free 

volumes to peak maximum  

 

• Therefore, if k’ is high, you can 

concentrate greater volumes of sample 

• Analogous to a retardation factor 

http://www.eichrom.com/eichrom/products/extraction.aspx 
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Acid 

Dependency of 

TEVA Resin 

Extraction  
Figures from 

www.eichrom.com 
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Acid 

Dependency of 

U/TEVA Resin 

Extraction  
Figures from 

www.eichrom.com 
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Acid 

Dependency of 

TRU Resin 

Extraction  
Figures from 

www.eichrom.com 
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Comparison of Eichrom Resins 
Figures from www.eichrom.com 

51 



Sample Extraction Scheme 
Morgenstern et al., Radiochim. Acta, 90, 81-85, 2002 

1. Load Solution: 6M 
HNO3, 0.3% H2O2 

2. 2 M HNO3, 2 x 10-3 M 
Ascorbic acid, 2 x 10-3 M 
hydroxylamine-
hydrochloride 

3. 2 M HNO3, 0.1 M 
H2C2O4 (oxalic acid) 

4. 7.0 x 10-3 M (NH4)C2O4 

(ammonium oxalate) 

6M HNO3 

0.3% H2O2 

U, Np, Am, Pu, 

Ln, FP 

T
E

V
A

 

1. 

2. 

3. 

1 

2. 

4. 

3. 

4. 

Elute Am(III), Ln(III), and 

Fission Products 

Elute Np(IV) 

Elute U(VI) 

Elute Pu(III) 
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Pu, Np, U, Am, Cm, Th Separation 
Maxwell, J. Radioanal. Nucl. Chem., 275, 497-502, 2008 
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Pu, Np, U, Am, Cm, Th Separation 
Maxwell, J. Radioanal. Nucl. Chem., 275, 497-502, 2008 
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MARLAP 

Table 14.6 
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Some useful resources for methodology 

• EPA NAREL, Rapid Radiochemical Methods for Selected 
Radionuclides in Water for Environmental Restoration 
Following Homeland Security Events, EPA 402-R-10-001, 
2010, www.epa.gov/narel 
 

• Environmental Measurements Laboratory, HASL-300 
Procedures Manual, 
https://www.orau.org/ptp/PTP%20Library/library/DOE/eml
/hasl300/HASL300TOC.htm  
 

• MARLAP, Multi-Agency Radiological Laboratory Analytical 
Protocols Manual (MARLAP), NUREG-1576, EPA 402-B-04-
001A, NTIS PB2004-105421, 2004 
https://www.epa.gov/radiation/multi-agency-radiological-
laboratory-analytical-protocols-manual-marlap 
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