

National Analytical Management Program (NAMP) U.S. Department of Energy Carlsbad Field Office

Radiochemistry Webinars *Nuclear Fuel Cycle Series* • *Chemistry and Radiochemistry of the Reactor Coolant System*

In Cooperation with our University Partners

NIVERSITY of CALIFORNIA · IRVINE

Meet the Presenter… *Dr. Robert Litman*

of nuclear

ray energies

of detecti

na Spectrometry Library Robert Litman, Ph.D., has been a researcher and practitioner of nuclear and radiochemical analysis for the past 42 years. He is well respected in the nuclear power industry as a specialist in radiochemistry, radiochemical instrumentation and plant systems Ice for each corrosion. He has co-authored two chapters of MARLAP, and is currently one of a team of EMS consultants developing radiological laboratory guidance on radionuclide sample analyses in various matrices, radioactive sample screening, method validation, core radioanalytical laboratory operations, contamination, and rapid

radioanalytical methods. He authored the Primary Water Chemistry Guidelines on Radionuclides section of the EPRI PWR, and has been a significant contributor to the EPRI Primary-to-Secondary Leak Detection Guidelines. Dr. Litman has worked with the NRC in support of resolving GSI-191 issues (chemical effects following a loss of coolant accident) at current nuclear power plants and reviewed designs for addressing that safety issue for new nuclear power plants. His areas of technical expertise are gamma spectroscopy and radiochemical separations. Dr. Litman has been teaching courses in Radiochemistry and related special areas for the past 28 years.

Phone: 603-944-2557 [Email:](mailto:dburns@atsofcolorado.com) [drbob20@centurylink.net](mailto:drbob20@comcast.net)

Chemistry and Radiochemistry of the Reactor Coolant System

Robert Litman, PhD

National Analytical Management Program (NAMP) U.S. Department of Energy Carlsbad Field Office

TRAINING AND EDUCATION SUBCOMMITTEE

Objectives

- Review the basic operation of a PWR and why chemistry control is important
- Describe the chemistry control regime in a PWR
- Describe the effects of chemistry control on radionuclide activity in the RCS
- Identify the principal radionuclides in the RCS and how they are formed
- Identify changes to RCS radiochemistry as a function of fuel condition and plant operation

Typical Reactor Coolant System of a PWR

Diagram from http://www.nrc.gov/reactors/power.html

Diagram from http://westinghousenuclear.com/Operating-Plants/PWR/Products-and-Services/cid/54/Steam-Generators

A PWR Fuel Assembly

Courtesy of Westinghouse at

http://intergoogle.westinghousenuclear.com/search?q=fuel+assembly&site=default_collection&client=westinghouse_frontend&proxystylesh eet=westinghouse_frontend&output=xml_no_dtd

What is the Job of the Plant Chemist at a PWR?

Minimize Corrosion

Why Minimize Corrosion?

- Minimizes activation to radioactive species
- Maximizes plant efficiency and power output
- Minimizes the probability of fuel defects occurring
- Minimizes the release of radionuclides to the environment and dose to the public
- Minimizes contamination in the plant
- Minimizes dose to plant staff

RCS Principal Metallurgy

(% Surface Area Exposed to RCS)

- Stainless Steel $(\sim 5\%)$
	- Piping
	- Pumps
	- Vessel, SG bowl and pressurizer internal cladding
- Inconel 600, 690, X-750 or 718 (60-70%)
	- SG tubes
	- Upper and lower internals
- Zircalloy or Zirlo (20-30%)
	- Fuel clad
	- Grid straps

RCS Components

- Stainless Steel
	- $-$ Accounts for \sim 5% of surface area in RCS
	- $-$ Contains ~18% chromium, ~8% nickel, ~74% iron
	- –Has the highest general corrosion rate of all internal RCS surface materials (10-3 to 10-5 mil/yr)
	- –Forms two different layers of corrosion during initial power cycle

RCS Components

- Inconel
	- –Accounts for 60-70% of surface area
	- –Composition
		- $~124$ -77% nickel, 14-17% chromium, 6-10% iron
		- Minor constituents (0.01-1%): Al, Cu, Ti, Si, Mn, C, Co, and S

RCS Components

• Zirconium alloys

- $-Zirc-4$ (98% Zr, ~1.4% Sn, 0.2% Fe,~0.1% Cr)
- $-$ Zirlo (99%Zr, \sim 1%Nb, \sim 0.1% Sn, lower Fe and Cr than Zirc-4)
- Principally as the fuel cladding
- –Accounts for about 20% of the surface area
- –Also used as the grid straps on the fuel assemblies

What are the Contaminants of Concern in the RCS?

- Major:
	- –Chloride
	- –Fluoride
	- –Oxygen
	- –Sulfate
	- –Zeolite formers (Al, Ca, Mg, Na, Si)

• Minor

- –Nitrates
- –Ammonia
- –Organics

Contaminants

- $Oxygen(₅ ppb)$
- Anionic
	- $-$ Cl (<150 ppb)
	- F (<150 ppb)
	- $SO₄²⁻ (<150 ppb)$
- Scale formers
	- $-$ Ca (<40 ppb)
	- $-$ Mg (<40 ppb)
	- $-$ Al (\leq 80 ppb)
	- $-$ Si (<100 ppb)

Principal Corrosion Mechanisms in the RCS

- General corrosion: all metals
- Intergranular attack
	- –Primary water stress corrosion cracking (PWSCC): stainless, Inconel
	- –Hydriding: zirlo, zircalloy
- Crevice corrosion: stainless

RCS General Corrosion (stainless steel)

RCS Fluid Flow

RCS Corrosion Film Characteristics (stainless steel)

- Region 1 a *transient* solid layer
- Region 1 stability affected by:
	- –Reactor power (i.e., temperature)
	- $-pH$
	- –Hydraulic flow
	- –Other chemicals/contaminants in the RCS
- Refueling outage effects

RCS Metal Alloys

- Highly resistant to general corrosion
- Metal alloys are a mixture

The microstructural unit – the "grain"

Metal Grains

- No specific size or shape
- Grain boundary
- Intergranular area
- Annealing of the alloy

 $2₀$

Stress

- Caused by the inexact alignment of the grain boundaries
	- –Somewhat relieved by annealing
	- –Can be increased by the result of "cold work" of metals
- Present to some extent in all alloys
- *Eventually* causes stress corrosion cracking (SCC)

What Chemicals are Used in the RCS?

- Water
- Hydrogen
- Boric acid
- Lithium hydroxide
- Hydrazine
- Hydrogen peroxide

Oxygen

The effect of oxygen on ferrous materials: $Fe + O₂ \leftrightarrow FeO$ (1) No Water! $Fe + H₂O \leftrightarrow FeO + H₂$ (2) No Oxygen!

Because the RCS operates with water, (2) is the one we focus on

Hydrogen

• Hydrogen is principally used to suppress the radiolytic cleavage of water by gamma radiation. Radiolysis produces oxygen and reactive radical species such as O•, •OH, •OOH, O₂•

$$
2H_2O \leftrightarrow 2H_2 + O_2
$$

H₂ + $\cdot OH \leftrightarrow H \cdot H_2O$
etc.

Hydrogen

• Hydrogen maintains metals in *lower* oxidation states:

 $\text{Ni}_{\text{x}}\text{Fe}_{\text{Y}}\text{O}_{\text{Z}} + \text{H}_{2} \rightarrow \text{Ni}_{\text{x}}\text{Fe}_{\text{Y}}\text{O}_{\text{Z-1}} + \text{H}_{2}\text{O}$

- Electrochemical potential
- Controls oxide form of Fe and Ni

Hydrogen

Too much hydrogen will hydride fuel cladding

$\text{Zr}^{\text{o}} + 2\text{H}_{2} \longrightarrow \text{ZrH}_{4}$ **Excess**

and also will destabilize CRUD layers

Effect of Hydrogen on CRUD

Boric Acid

- Soluble neutron absorber is ¹⁰B (19.9 %)
- Start of fuel cycle: 1200-1700 ppm B
- End of fuel cycle: 0 ppm B
- The "at temperature" pH of RCS is acidic without a pH control agent

Boric Acid Reactions

- Both isotopes of boron undergo nuclear reactions:
	- $-$ ¹⁰B(n, α)⁷Li
		- Cross section is ~3900 barns
		- \sim 0.15 ppm/day/1000 ppm boron
	- $-{}^{11}B(n,\gamma){}^{12}B \rightarrow {}^{12}C$
		- Cross-section is 5 mb

Control of RCS at pH_{Tave} is "Critical"

- Boric acid makes the RCS acidic
- LiOH is added $\rm pH_{Tavg}$ to about 7.2 –Neutrality for $\rm pH_{Tave}$ is about 6.9
- Ratio of B/Li maintained by Chemistry and Operations groups

Why Lithium?

- No long-lived activation products
- Easily enriched to the ⁷Li isotope
- Small amount in mass required to adjust pH
- It is produced by boron reaction

Lithium Concentration During Power **Operation**

- Lithium is also "used up" by:
	- RCS bleed and feed
		- To maintain power level by diluting out B
	- Chemistry sampling
	- Cation bed in service
	- RCP seal leak off
- Certain operational changes require addition of lithium

Lithium Concentration During Power **Operation**

• Produced by

- ¹⁰B(n,α) ⁷Li reaction
- Cross section is ~3900 barns
- $-$ ~0.15 ppm/day/1000 ppm boron
- Used up by
	- $-$ ⁷Li(n,na)³H
		- This is NOT a significant contributor to RCS ³H

$$
- \quad \text{7Li}(n,\gamma)^8 \text{Li} \rightarrow {}^8\text{Be} + \beta
$$

$$
2\alpha
$$

(⁸Li t_{1/2} = 840 ms) (⁸Be t_{1/2} = 7x10⁻¹⁷ s)

What About 6Li?

- Natural lithium is 7.6% ⁶Li
	- –PWR lithium is enriched to 99.5+% ⁷Li

34

- –Minimizes production of tritium
	- \cdot ⁶Li(n, α)³H

Lithium and Boron Effects

(Constant Temperature)

Hydrazine

• Added during start-up from refueling outages

36

- Reacts with oxygen $-N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$
- Decomposes
	- $-N2H4 \rightarrow 2H2 + N2$
	- $-2N2H4 \rightarrow N2 + 2NH3 + H2$

Hydrogen Peroxide

- Transient corrosion layer
- Decomposes into $H₂O$ and $O₂$
- Provides an oxidizing environment to solubilize ions

37

Activation Products: Corrosion and Contaminants

Radionuclides: Activation of Water and Chemicals

Note: This is positron annihilation radiation because ¹¹C, ¹³N and ¹⁸F decay by positron emission. The positron interacts with an electron, and two 511 keV gamma rays are emitted. There is no direct gamma ray associated with ¹¹C, ¹³N or ¹⁸F decay.

Fission Product Radionuclides

Radionuclides Formed from the Activation of Fuel

Fuel Defect

Summary

- Corrosion in a PWR RCS is minimized to:
	- –Maintain component integrity
	- –Maintain good fuel performance
	- –Minimize the activation of corrosion products
- Control of contaminants and pH help to achieve these objectives

43
43 Martin
43 Martin

References

- EPRI, "Pressurized Water Reactor Primary Water Chemistry Guidelines" (Volume 1, Revision 6)
- *Data Source for Half-lives and Cross Sections: [National](http://www.nndc.bnl.gov/) [Nuclear Data Center](http://www.nndc.bnl.gov/), [Brookhaven National Laboratory](http://www.bnl.gov/), based on [ENSDF](http://www.nndc.bnl.gov/ensdf/) and the [Nuclear Wallet Cards,](http://www.nndc.bnl.gov/wallet/) www.nndc.bnl.gov/chart*
- Diagrams from:
	- [http://westinghousenuclear.com/Operating-](http://westinghousenuclear.com/Operating-Plants/PWR/Products-and-Services/cid/54/Steam-Generators)[Plants/PWR/Products-and-Services/cid/54/Steam-](http://westinghousenuclear.com/Operating-Plants/PWR/Products-and-Services/cid/54/Steam-Generators)**[Generators](http://westinghousenuclear.com/Operating-Plants/PWR/Products-and-Services/cid/54/Steam-Generators)**
	- [http://intergoogle.westinghousenuclear.com/search?q](http://intergoogle.westinghousenuclear.com/search?q=fuel+assembly&site=default_collection&client=westinghouse_frontend&proxystylesheet=westinghouse_frontend&output=xml_no_dtd) [=fuel+assembly&site=default_collection&client=westi](http://intergoogle.westinghousenuclear.com/search?q=fuel+assembly&site=default_collection&client=westinghouse_frontend&proxystylesheet=westinghouse_frontend&output=xml_no_dtd) [nghouse_frontend&proxystylesheet=westinghouse_fr](http://intergoogle.westinghousenuclear.com/search?q=fuel+assembly&site=default_collection&client=westinghouse_frontend&proxystylesheet=westinghouse_frontend&output=xml_no_dtd) [ontend&output=xml_no_dtd](http://intergoogle.westinghousenuclear.com/search?q=fuel+assembly&site=default_collection&client=westinghouse_frontend&proxystylesheet=westinghouse_frontend&output=xml_no_dtd)
	- www.nrc.gov/reactors/power.html

Upcoming Webinars in the Nuclear Fuel Cycle Series

•The PUREX Process

•Advanced Partitioning Technologies in the U.S. •Advanced Partitioning Technologies in Europe

NAMP website http://www.wipp.energy.gov/namp/