

Radiochemistry Webinars Sample Matrices and Collection, Sample Preparation

In Cooperation with our University Partners

Meet the Presenter...

Dr. Amy E. Hixon

Dr. Amy E. Hixon is an Assistant Professor in the Department of Civil & Environmental Engineering & Earth Science at the University of Notre Dame, where she teaches courses in environmental and aquatic chemistry, actinide chemistry, and nuclear forensic analyses. She received her Ph.D. in Environmental Engineering & Earth Science from Clemson University under the direction of Dr. Brian Powell and her M.S. from the same institution and department under the direction of Dr. Timothy DeVol. Dr. Hixon's research integrates analytical chemistry, instrumental analysis,

Alixon's research integrates analytical chemistry, instrumental analysis, and modeling techniques to gain a fundamental understanding of the behavior of the actinide elements in natural and engineered systems. She currently supports three undergraduate students and five graduate students on three funded projects. Two projects are independently funded by the Department of Homeland Security to support studies on the environmental aging of nuclear materials and surrogate materials development in support of post-detonation nuclear forensics. The third is an Energy Frontier Research Center (EFRC), Materials Science of Actinides, funded by the Department of Energy and led by Dr. Peter Burns, which funds Dr. Hixon's group as part of a much larger project (~\$12M for four years). Her work under the EFRC focuses on understanding interactions between uranyl peroxide cage clusters and solid phases in order to develop nanoscale control of actinides in an advanced fuel cycle.

Contact Information: Amy. Hixon. 2@nd.edu

Sample Matrices and Collection, Sample Preparation

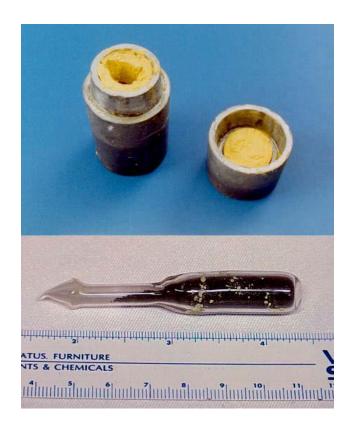
Dr. Amy E. Hixon University of Notre Dame

National Analytical Management Program (NAMP) U.S. Department of Energy Carlsbad Field Office

Nuclear forensics...

...seeks to determine the physical, chemical, elemental, and isotopic characteristics of nuclear material with unknown origin

...has two aspects


Pre-detonation nuclear forensics

Post-detonation nuclear forensics

Pre-detonation nuclear forensics

Lead pig and HEU oxide sample interdicted in Rousse, Bulgaria in 1999 (Kristo, 2011). Focuses on the characterization of interdicted nuclear materials to determine their origin

- Critical signatures:
 - Morphological/microstructural features
 - Trace element abundances
 - U/Pu isotope ratios
- Spatially-resolved data may provide valuable information that is masked by bulk analysis techniques

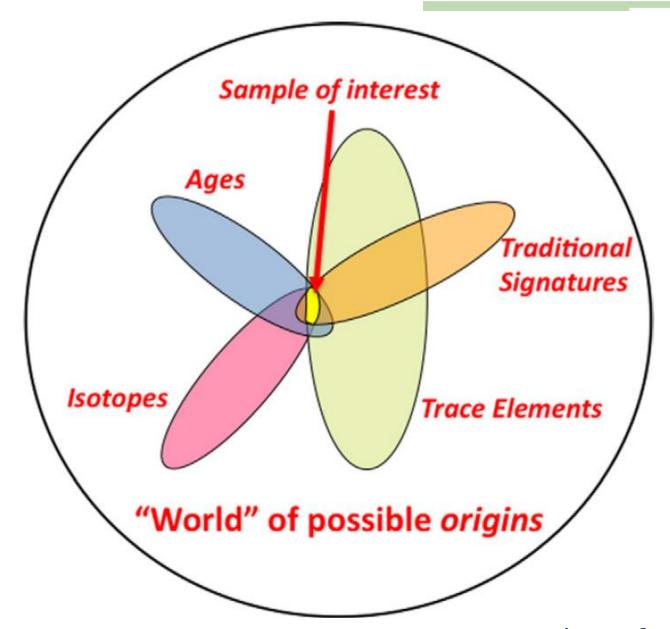
Post-detonation nuclear forensics

Produces information about the design of the exploded device, level of sophistication, and origin of nuclear material

Bottle green and red Trinitite glass (Eby et al., 2015)

- High-quality analysis of debris and accurate device interpretation are needed
- Debris
 - Wide range of matrices
 - -Heterogeneous in nature

Various Scenarios


Pre-detonation

- Environmental monitoring to support safeguards
- Interception of nuclear material or intact device

Post-detonation

- Radiological dispersive device (RDD)
- Fissile or primitive device
 - Nuclear detonation with limited yield
 - 100s-1000s of casualties
- Nuclear explosion
 - Kiloton yield
 - 1000s-100,000s of casualties
 - Mass destruction

IAEA Category of Nuclear Material	Characteristics			
SNM				
High enriched uranium (HEU)	>20% ²³⁵ U			
Weapons-grade uranium (WGU)	Pure uranium metal, >93% ²³⁵ U			
Weapons-grade plutonium (WGPu)	Pure plutonium metal, <7% ²⁴⁰ Pu			
Super-grade plutonium (SGPu)	Pure plutonium metal, <3% ²⁴⁰ Pu			
Reactor fuel				
Low enriched uranium (LEU)	<20% (typically 3-5%) ²³⁵ U			
Reactor-grade plutonium (RGPu)	>19% ²⁴⁰ Pu, produced in nuclear reactor			
Fuel-grade plutonium (FGPu)	7% < ²⁴⁰ Pu < 19%, produced in nuclear reactor			
MOX-grade plutonium (MGPu)	>30% ²⁴⁰ Pu, recycled from mixed oxide fuel			
Radioactive sources				
Medical diagnostic sources	Short-lived radioisotopes			
Radiotherapy sources	⁶⁰ Co and ¹³⁷ Cs			
Irradiators/sterilizers	⁶⁰ Co and ¹³⁷ Cs			
Radiography/NDT	192 Ir			
Gauging	⁶⁰ Co, ¹³⁷ Cs, ²⁴¹ Am			
Radioisotope thermoelectric generators (RTG)	²³⁸ Pu, ²⁴⁴ Cm, ⁹⁰ Sr			

Identifying Data Needs

- What types of samples need to be collected?
 - -Collocated samples
 - -Field replicates
 - -Background samples
- What are the radionuclide(s) of interest?
- How will samples be preserved and shipped?
- What are the sample tracking and documentation requirements?

"Sampling is the process of collecting a portion of an environmental medium as representative of the locally remaining medium."

"Representativeness is a measure of the degree to which data accurately and precisely represent a characteristic of a population parameter at a sampling point."

-Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)

Sample Collection Procedures

- Ensure that a sample is:
 - -Representative of the sample media
 - Large enough to provide sufficient material to achieve the desired detection limit
 - -Consistent with assumptions used to develop the conceptual site model and derived concentration guideline level (DCGL) for each radionuclide of interest
- Take into consideration worker exposure and special handling considerations

Soil/Sediment Matrices

- Why?
 - -Integrate signature species over time
 - Wet and dry atmospheric deposition, accidental releases, transport activities

Sample volume

- -Forensic specimens should be collected over a wide area and from minimal soil thickness
- -Large volumes: 100g several kg
 - more representative than small volumes of soil
 - detection limits and multiple analyses

Soil Sampling Equipment

Equipment	Application	Advantages/Disadvantages
Scoop or trowel	Soft surface soil	Inexpensive, easy to use and decontaminate; trowels with painted surfaces should be avoided
Bulb planter	Soft soil, 0-15 cm (0-6 in)	Easy to use; uniform diameter and sample volume, preserves soil core; limited depth capability; can be difficult to decontaminate
Soil coring device	Soft soil, o-60 cm (o-24 in)	Relatively easy to use; preserves soil core; limited depth capability; can be difficult to decontaminate

Sample containers: PE bottles, multiple PE bags

Vegetation Matrices

- Bioindicators
- Time-history intelligence
 - Pines and firs drop needles once every few years
 - Analyses of distinct layers of fallen needles
- Two possible collection modes:
 - The exposed portion can serve as an air collector
 - The root system samples ambient soil and groundwater

Source: Wikimedia Commons

Other Matrices

Primary containers for specimen storage and transport

Inorganic Analyses

- Teflon is optimal
- Solids/soils
 - multiple PE bags, polyvials
- Aqueous samples
 - polyvials
- Glass containers affect experimental blanks

Organic Analyses

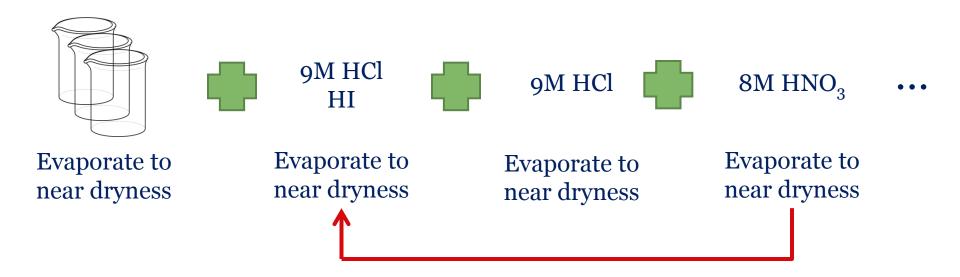
- Ultraclean glass vials are optimal
 - Teflon-lined caps
 - Septum tops
- Plastic vials are a significant source of phthalates

Analytical Tools

- Bulk analysis tools
 - -Inductively coupled plasma mass spectrometry (ICP-MS)
 - -X-ray fluorescence (XRF)
- Imaging tools
 - -Optical microscopy
 - -Scanning electron microscopy (SEM)
 - -Transmission electron microscopy (TEM)
- Microanalysis tools
 - Energy dispersive X-ray spectroscopy (EDX)

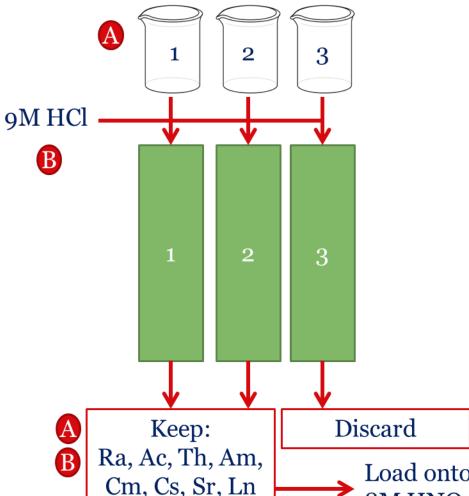
Technique/ Method	24 hours	1 week	2 months
Radiological	Estimated total activity Dose rate (α, γ, n) Surface contamination		
Physical Characterization	Visual inspection Radiography Photography Weight Dimension Optical microscopy Density	SEM (EDX) XRD	TEM (EDX)
Isotope Analysis	γ-spectroscopy α-spectroscopy	Mass spectroscopy (SIMS, TIMS, MC- ICP-MS)	Radiochemical separations
Elemental/ Chemical		ICP-MS XRF Assay (titration, IDMS)	GC/MS

General Guidance for Sample Preparation


- Minimize potential sample losses:
 - Losses as dust or particulates
 - Losses through volatilization
 - Losses due to reactions between sample and container

Radioanalytical Chemistry

- Destructive technique
- Dissolution
 - Reagents must be purged with He to remove trace
 Xe and Kr
 - -Any sample containing a significant quantity of Pu must be treated with HF
 - Fluoride can interfere with added tracers
 - HClO₄ or repeated nitric acid evaporations
 - Final matrix is usually HCl


Tracer exchange by redox

- Each solution is sampled three times:
 - 1. Solution is processed without added tracers
 - 2. Solution is traced with ²⁴⁶Cm, ²⁴³Am, and ²³⁶Pu
 - 3. Solution is traced with ²³⁷Np

Chemical Separations

- © Elute Pu with warm 10M HCl + HI Keep all three fractions
- Elute Pa with 9M HCl + 0.02M HF Keep fractions from columns 1 & 3
- Elute Np with 4M HCl + 0.1M HF Keep fractions from columns 1 & 2
- Elute U with 0.1M HCl Keep all three fractions

Load onto separate ion anion exchange column in 8M HNO₃; elute Th with 9M HCl

Alpha Spectroscopy

- Alpha spectroscopy is a widely used technique for the identification and quantification of alpha-emitting radionuclides.
 - -Naturally occurring alpha emitters
 - -Transuranium elements, special nuclear materials
- Characterized by high efficiency, low background, and low detection limits
- Can be applied for the assay of a variety of samples.

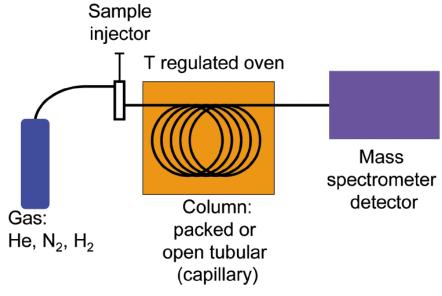
Sample Preparation: Alpha Spectroscopy

- Typically requires the separation of the element of interest from the bulk sample.
 - -One source for each element of interest
- Ideal source is an infinitely thin, weightless source on a perfectly prepared substrate

Sample Preparation: Alpha Spectroscopy

Source Preparation

Chemical Separations


Preliminary Treatments

Source Preparation for Alpha Spectroscopy

- Evaporation
 - -Tends to form inferior sources
 - Crystals/aggregates cause self-absorption
 - Spreading agents (e.g., tetraethylene glycol) are organics that must be burned off
- Electrodeposition
 - -Widely used
 - Ion being deposited is reduced by the addition of electrons gained from an electrolytic solution
- Hydroxide and fluoride precipitation

Organic Sample Preparation

- Gas chromatography-mass spectrometry (GC-MS) is most versatile
- Chemical extraction
 - Ultrasonic extraction
 - Microwave-assisted extraction
 - Liquid-liquid solvent extraction
 - methylene chloride
 - 3:1 methylene chloride:isopropanol
 - Acetone
- Solid-phase microextraction (SPME)

Source: Wikipedia

"A measurement is only as good as the sample preparation that proceeded it."

-Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP)

References

- Buchmann, J.H.; Sarkis, J.E.S.; Kakazu, M.H.; Rodriques, C. Environmental monitoring as an important tool for safeguards of nuclear material and nuclear forensics. *J Radioanal Nucl Chem*, **2006**, *270*, 291-298.
- Eby, G.N.; Charnley, N.; Pirrie, D.; Hermes, R.; Smoliga, J.; Rollinson, G. Trinitite redux: Mineralogy and petrology. *Am Mineral*, **2015**, *100*, 427-441.
- Kristo, M.J. Nuclear forensics in radiometric methods of detection. In: Handbook of Radioactivity Analysis, 3rd Ed. US Department of Energy: Washington, DC, 2011.
- Kristo, M.J.; Tumey, S.J. The state of nuclear forensics. *Nucl Instr Meth Phys Res B*, **2013**, 294, 656-661.
- Moody, K.J.; Grant, P.M.; Hutcheon, I.D. Nuclear Forensic Analysis. Taylor & Francis Group, LLC: Boca Raton, 2015.
- Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), available at https://www.epa.gov/radiation/multi-agency-radiological-laboratory-analytical-protocols-manual-marlap
- Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), available at https://www.epa.gov/radiation/multi-agency-radiation-survey-and-site-investigation-manual-marssim
- Smith, D.K.; Kristo, M.J.; Niemeyer, S.; Dudder, G.B. Documentation of a model action plan to deter illicit nuclear trafficking. *J Radioanal Nucl Chem*, **2008**, *276*, 415419.

Questions?

Upcoming Webinars

- Nuclear Materials Analysis Physical and Spectroscopic Methods
- Nuclear Materials Analysis Chemical Methods
- Nuclear Materials Analysis Non-Destructive Analysis

NAMP website: www.wipp.energy.gov/namp